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Chapter 4: My First Model 

4.1. Introduction 

We have finally reached the heart of the KNIME Analytics platform:  data modeling. There are 

two categories of nodes in the “Node Repository” panel fully dedicated to data modeling: 
“Analytics”  “Statistics” and “Analytics”  “Mining”. The “Statistics” category contains nodes 

to calculate statistical parameters and perform statistical tests. The “Mining” category 

contains mainly machine learning algorithms, from Artificial Neural Networks to Bayesian 

Classifiers, from clustering to Support Vector Machines, and more. 

Data modeling consists of two phases: training the model on a set of data (the training dataset) 

and applying the model to a set of new data (live data or a test dataset). Complying with these 

two phases, data modelling algorithms in KNIME Analytics Platform are implemented with two 

nodes: a “Learner” node to train the model and a “Predictor” node to apply the model. The 
“Predictor” node takes on another name when we are dealing with unsupervised training 
algorithms. 

The “Learner” node reproduces the training or learning phase of the algorithm on a dedicated 
training dataset. The “Predictor” node classifies new unknown data by using the model 
produced by the “Learner” node. For example, “Mining”  “Bayes” category implements naïve 
Bayesian classifiers. “Naïve Bayes Learner" node builds (learns) a set of Bayes rules on the 
learning (or training) dataset and stores them in the model. The “Naïve Bayes Predictor” node 
then reads the Bayes rules from the model and applies them to the incoming data. 

All data modeling algorithms need a training dataset to build the model. Usually, after building 

the model, it is useful to evaluate the model quality, just to make sure we are not believing 

predictions produced by a poor-quality model. For evaluation purposes, a new data set, named 

test dataset, is used. Of course, the test dataset has to contain different data from the training 

dataset, to allow for the evaluation of the model capability to work properly onto unknown new 

data. For evaluation purposes, then, all modelling algorithms need a test dataset as well. 

In order to provide a training set and a test set for the algorithm, usually the original data set is 

partitioned in two smaller data sets: the learning/training dataset and the test dataset. To 

partition, reorganize, and re-unite datasets, we use nodes from the “Manipulation”  “Row”  

“Transform" category.  
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Sometimes problems can be incurred when there are missing values in the data. Indeed, not all 

modeling algorithms can deal with missing data. The model might also require the dataset to 

have a normal distribution. To remove missing data from the data sets and to normalize values 

in a column, we can use more nodes from the “Manipulation”  “Column”  “Transform” 
category. 

In this chapter, we provide an overview of machine learning nodes, i.e., Learner and Predictor 

nodes, and of nodes to manipulate rows and transform values in columns. We work on the 

adult dataset, already used in the previous chapters. Here we create a new workflow group 

“Chapter4”, and inside that a new workflow called “Data Preparation”. We use this workflow to 
prepare the data for further data modeling operations. The first step of this workflow is to read 

the adult dataset with a “CSV Reader” node. 

4.2. Split and Combine Datasets 

Since many models need training data and separated test data, these two data sets have to be 

set up before modeling the data. In order to extract two data sets - one for training and one for 

testing - from the original data set, the “Partitioning” node can be used. If only a training set is 

needed and not a test set or if the original data set is too big to be used wholly, we can use the 

“Row Sampling” node. 

Row Sampling 

The “Row Sampling” node extracts a sample (= a subset of rows) from the input data. The 

configuration window enables you to specify: 

 The sample size as an absolute number of rows or as a percentage of the original data 

set 

 The extraction mode 

 “Take from the top” means the top rows of the original data set 

 “Linear Sampling” takes the first and the last row and samples in between these rows at 
regular steps 

 “Draw randomly” extracts rows at random  
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 “Stratified sampling” extracts rows randomly whereby the distribution of values in the 
selected column is approximately retained in the output table 

For “Draw randomly” and “Stratified 
sampling” a random seed can be defined so 
that the random extraction is reproducible 

(you never know when you need to recreate 

the exact same random training set). 

In Figure 4.1 we selected a size of 20% of the 

original dataset for the learning set. Rows 

were extracted randomly from the original 

dataset. The size of 20% of the original 

dataset is probably too small; to be sure that 

all classes are actually represented in the 

learning set we could use the stratified 

sampling option. 

Note. The “Row Sampling” node only produces one data subset that we can use either to 
train or to test a model, but not both. If we want to generate two data subsets, the first one 

according to our specifications in the configuration window, and the second one with the 

remaining rows, we need to use the “Partitioning” node. 

Partitioning 

The “Partitioning” node performs the same task as the “Row Sampling” node: it extracts a 
sample (= a subset of rows) from the input data. It also builds a second dataset with the 

remaining rows and makes it available at the lower output port. 

The configuration window enables you to specify: 

 The sample size as an absolute number of rows or as a percentage of the original data 

set 

 The extraction mode 

 “Take from the top” means the first rows of the original data set 

 “Linear Sampling” takes the first and the last row and samples between rows at regular 
steps 

Figure 4.1. Configuration window for the Row Sampling 

node. 
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 “Draw randomly” extracts rows at 
random  

 “Stratified sampling” extracts rows 
whereby the distribution of values in the 

selected column is approximately 

retained in the output table 

For “Draw randomly” and “Stratified 
sampling” a random seed can be defined so 
that the random extraction is reproducible 

(you never know when you need to recreate 

the same learning set). 

Here, we selected a size of 50% of the original 

data set for the training set plus a linear extraction mode. The training set was made available 

at the upper output port; the remaining data were made available at the lower output port. In 

the linear sampling technique, rows adhere to the order defined in the original data set.  

Sometimes it is required to present the data rows in the original order to the training algorithm, 

for example, when dealing with time series prediction. The row order, in this case, is a temporal 

order and is used by the model to represent temporal sequences. In this case, the linear 

sampling technique is advised. If we are dealing with time series analysis, where the past and 

the future have to remain separate, the “take from top” strategy is recommended. 

Sometimes, however, it is not advisable to present rows to a Learner node in a specific order; 

otherwise, the model might learn the row order among all other underlying patterns. For 

example, the customer order in the database does not mean anything more than assigning a 

sequential identifying key to each customer. To be sure that data rows are presented to the 

model’s Learner node in a random order, we can extract them randomly or apply the “Shuffle” 
node. 

Shuffle 

The “Shuffle” node shuffles the rows of the input table putting them in a random order. 

In general, the “Shuffle” node does not need to be configured. If we want to be able to repeat 
exactly the same random shuffling of the rows, we need to use a seed, as follows: 

 Check the “Use seed” flag 

Figure 4.2. Configuration window of the Partitioning node. 
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 Click the “Draw new seed” button to create a seed for the random shuffling and recreate 
it at each run 

We only applied the “Shuffle” node to the 
training set. It does not make a difference 

whether the data rows of the test set are 

presented into a pre-defined order or not.  

Now we have a training dataset and a test 

dataset. But what if we want to recreate the 

original dataset by reunifying the training and 

the test set? KNIME has a “Concatenate” 
node that comes in handy for this task. 

Concatenate 

The “Concatenate” node has two input ports, each one for a data set. The “Concatenate” node 
appends the data set at the lower input port to the data set at the upper input port. 

The configuration window deals with the following: 

 What to do with rows with the same ID: 

o skip the rows from the second data 

set 

o rename the RowID with an 

appended suffix 

o abort execution with an error (This 

option can be used to check for 

unique RowIDs) 

 Which columns to keep 

o all columns from the second and 

first data set (union of columns) 

o only the intersection of columns in the two data sets (i.e., columns contained in both 

tables) 

 Option “Enable hiliting” refers to the hiliting property available in the old “Data Views” 
nodes. 

Figure 4.3. Configuration window of the Shuffle node. 

Figure 4.4. Configuration window for the Concatenate 

node. 
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Figure 4.4 shows an example of how the “Concatenate” node works, when the following options 
in the configuration window are enabled: 

 append suffix to RowID in rows with duplicate RowID 

 use union of columns 

 no hiliting enabled 

A similar node to the “Concatenate” node is the “Concatenate (Optional in)” node. The 
“Concatenate (Optional in)” node works exactly the same as the “Concatenate” node but allows 
to concatenate up to 4 data sets at the same time. 

An example how the Concatenate node works:

First Data Table 

RowID Scores 

Row1 22 

Row3 14 

Row4 10 

Second Data Table 

RowID Name Scores 

Row1 The Black Rose 23 

Row2 Cynthia 2 

Row5 Tinkerbell 4 

Row6 Mother 6 

Row7 Augusta 8 

Row8 The Seven Seas 3 

Concatenated Table 

RowID Name Scores 

Row1 ? 22 

Row3 ? 14 

Row4 ? 10 

Row1_dup The Black Rose 23 

Row2 Cynthia 2 

Row5 Tinkerbell 4 

Row6 Mother 6 

Row7 Augusta 8 

Row8 The Seven Seas 3 
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4.3. Transform Columns 

We have successfully derived a training set and a test set from the original data set. The original 

data set, though, contained missing values in some of its data columns and some machine 

learning algorithms cannot deal with missing values. KNIME data cells, indeed, can have a 

special “missing value” status. By default, missing values are displayed in the table view with a 
question mark (“?”).  

Some of the Learner nodes might ignore data rows containing missing values, therefore 

reducing the data basis they are working on; and some of the Learner nodes will just fail when 

encountering a missing value. In the last case, a strategy to deal with missing values is required; 

but even in the first case, a strategy to deal with missing values is advisable to expand the data 

basis for the future model. 

There are many strategies to deal with missing values and books have been written about 

which strategy is best to use in which context. Each strategy consists in substituting the 

missing value in question with another plausible value. What is the most plausible value 

depending on the context and often on the expert’s knowledge.  

KNIME Analytics Platform implements the most common strategies to deal with missing 

values, such as using the data column mean value, moving average, maximum/minimum, most 

frequent value, linear and average interpolation, previous or next value, a fixed value, and 

probably by now more. Of course, the option of removing the data row containing a missing 

value is always available.  

The node that deals with missing values is named “Missing Value”. The “Missing Value” node 
takes a data table as input and replaces missing values everywhere or only in selected columns 

with a value of your choice. The new data table with replaced missing values is then produced 

at the upper output port. Indeed, this node has two output ports. The lower output port is in the 

shape of a square blue rather than the usual black triangle. A blue square port means a PMML-

compliant model. 
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PMML 

PMML (Predictive Model Markup Language) is a standard XML-based 

structure that enables the storage of predictive models and data 

transformations.  Since it is a standard structure, it enables the 

portability of models and transformations across platforms and 

applications. 

KNIME Analytics platform supports PMML for models and 

transformations. The blue squares as input and output ports in KNIME 

nodes identify PMML compliant objects, be it predictive models or ETL 

transformations. 

In KNIME it is not only possible to export models and single transformations as PMML 

structures, but also to modularly concatenate them so that the final PMML structure contains 

the sequence of transformations and the model created in the workflow and fed into the PMML 

structure. Two nodes are key for modular PMML: “PMML Transformation Appender” and 
“PMML Model Appender”. 

Note. Some of the missing value strategies are marked with an asterisk in the menus of the 

configuration window in the “Missing Value” node. The asterisk indicates that such 
transformations are not PMML supported. 

Missing Value 

The “Missing Value” node replaces missing values in a data set everywhere or only in selected 
columns with a value of your choice.  

In the “Default” tab, replacement values are defined separately for numerical and string type 
columns and applied to all data columns of the same type.  

In the “Column Settings” tab, a replacement value is defined specifically for each selected data 
column and applied only to that column. To define the replacement value for a column: 

 Double-click the column in the list on the left, OR  

 Select the column from the list on the left  

 Click the “Add” button under the list 

Figure 4.5. The Missing 

Value node. 
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Then, select the desired missing value handling strategy. 

A “Column Search” box is provided to help to find columns among many. A “Remove” button is 
also provided in the data column frame to remove the individual missing value handling 

strategy for the selected column. We introduced a “Missing Value” node prior the “Partitioning” 
node in our “Data Preparation” workflow. Here we set 0 as the fixed value to replace missing 
values in all numerical columns and “Do nothing” for missing values in String columns. Then, 
for column “age” (Integer) and “income” (String), we set individual replacement strategies for 
missing values. In column “age” missing values are replaced by the data column mean value; 

in column “income”, rows with missing values are simply removed. While the missing value 
strategy for “age” is purely demonstrative, the missing value strategy for “income” is necessary, 
since we want to predict the “income” value given all other census attributes for each person. 

Some data models - such as neural networks, clustering, or other distance-based models - 

require normalized input attribute values, for the data to be either normalized to follow the 

Gaussian distribution or just to fall into the [0,1] interval.  In order to comply with this 

requirement, we use the “Normalizer” node. 

Figure 4.6. Configuration window for the Missing Value 

node: the "Default" tab. 

Figure 4.7. Configuration window for the Missing Value 

node: the "Column Settings" tab. 
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Normalizer & Normalizer (Apply) 

The “Normalizer” node normalizes data, i.e., it transforms the data to fall into a given interval 
or to follow a given statistical distribution. The “Normalizer” node is located in the “Node 
Repository” panel in the “Manipulation”  “Column”  “Transform” category. 

The configuration window requires:  

 the list of numerical data columns to be normalized 

 the normalization method 

The column selection is performed by means of an “Exclude”/”Include” frame, by manual 
selection or Wildcard/RegEx selection. For manual selection: 

 The columns to be normalized are listed in the “Normalize” frame. All other columns are 
listed in the “Do not normalize” frame. 

 To move from frame “Normalize” to frame “Do not normalize” and viceversa, use buttons 
“add” and “remove”. To move all columns to one frame or the other use buttons “add all” 
and “remove all”. 

The “Normalizer” node has 2 output ports:  

 At the upper port we find the normalized data 

 At the lower port the transformation parameters are provided to repeat the same 

normalization on other data (light blue/dark blue square port)  

Figure 4.8. Configuration window of the Normalizer node. 
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Note. Triangular ports output/read data. Squared ports output/read parameters: model’s 
parameters, normalization parameters, transformation parameters, graphics parameters, 

etc. 

There are two normalizer nodes: “Normalizer” and “Normalizer (PMML)” node. They perform 
exactly the same task using the same settings. The only difference is in the exported parameter 

structure: KNIME proprietary structure (light blue square) or PMML compliant structure (dark 

blue square).  

The “Normalizer (Apply)” node normalizes data. That is, it transforms data to fall into a given 
interval or to follow a given statistical distribution. It does not calculate the transformation 

parameters though; it obtains them from a “Normalizer” node previously applied to a similar 

data set. The “Normalizer(Apply)” node is located in the “Node Repository” panel in the 
“Manipulation”  “Column”  “Transform” category. The node has two input ports:  

 one for the data to be normalized  

 one for the normalization parameters 

No additional configuration is required. 

Normalization Methods 

 Min-Max Normalization: This is a linear transformation whereby all attribute values in a 

column fall into the [min, max] interval and min and max are specified by the user. 

 Z-score Normalization: This is also a linear transformation whereby the values in each 

column are Gaussian-(0,1)-distributed, i.e., the mean is 0.0 and the standard deviation is 

1.0. 

 Normalization by Decimal Scaling: The maximum value in a column is divided j-times by 

10 until its absolute value is smaller or equal to 1. All values in the column are then divided 

by 10 to the power of j. 

We applied the “Normalizer” node to the training set from the output port of the “Partitioning” 
node, in order to normalize the training set and to define the normalization parameters. We then 

introduced a “Normalizer (Apply)” node to read the normalization parameters and to use them 

to normalize the remaining data from the “Partitioning” node (2nd output port). 
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Let’s now write the processed training dataset and test dataset into CSV files, named 
“training_set.csv” and “test_set.csv” respectively. We used two “CSV Writer” nodes: one to write 
the training set into “training_set.csv” file and one to write the test set into “test_set.csv” file. 
These last 2 nodes conclude the “Data Preparation” workflow. 

4.4. Machine Learning Models 

Now let’s create a new workflow and call it “My First Model”. We will use this workflow to show 
how models can be trained on a set of data and then applied to new data. To give an overview, 

we will go through some standard data analysis method paradigms. Standard here refers to 

the way the paradigms are implemented in KNIME – for example with one node as the Learner 

and a separate node as the Predictor/Applier – rather than with regard to the quality of the 

algorithm itself. 

Figure 4.9. The "Data Preparation" workflow. 
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The first two nodes in this new workflow are two “CSV Reader” nodes: one to read the training 
set and one to read the test set that was saved in two CSV files in the “Data Preparation” 
workflow at the end of the last section. 

In this workflow “My First Model”, we want to predict the “income” label of the adult data set by 
using the other attributes and based on a few different models. This section does not intend to 

compare those models in terms of accuracy or performance. Indeed, not much work has been 

spent to optimize these models to become the most accurate predictors. Contrarily, the goal 

here is to show how to create and configure such models. How to optimize the model 

parameters to ensure that they will be as accurate as possible is a problem that can be explored 

elsewhere2,3,4. 

In every supervised prediction/classification problem, we need a labelled training set; that is a 

training set where each row has been assigned to a given class. These output classes of the 

data rows are contained in a column of the data set: this is the class or target column. 

Most data mining and statistics paradigms consist of two nodes: a Learner and a Predictor.  

The Learner node defines the model’s parameters and rules that make the model suitable to 
perform a given classification/prediction task. The Learner node uses the input data table as 

the training set to define these parameters and rules. The output of this node is a set of rules 

and/or parameters: the model. The Predictor node uses the model built in the previous step 

and applies it to a set of unknown (i.e., new unclassified) data to perform the classification/ 

prediction task for which it was built. 

The Learner node requires a data table as input and provides a model as output. The output 

port of the Learner node is represented as a blue square, which is the symbol for a PMML-

compliant model. 

The Predictor node takes a data table and a model at the input ports (a black triangle for the 

data and a blue square for the model) and provides a data table containing the classified data 

at the output port. 

 
2 C.M. Bishop, “Pattern Recognition and Machine Learning”, Springer (2007) 

3 M.R. Berthold, D.J. Hand, “Intelligent Data Analysis: An Introduction“, Springer Verlag, 1999 

4 M.R. Berthold, C. Borgelt , F. Höppner, F. Klawonn, “Guide to intelligent data analysis”, Springer 2010 
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Naïve Bayes Model 

Let’s start with a naïve Bayes model. A Bayesian model defines a set of rules, based on the 
Gaussian distributions and on the conditional probabilities of the input data, to assign a data 

row to an output class2,3,4. In the “Node Repository” panel in the “Mining”  “Bayes” category 
we find two nodes: “Naïve Bayes Learner” and “Naïve Bayes Predictor”. 

Naïve Bayes Learner 

The “Naïve Bayes Learner” node creates a Bayesian model from the input training data. It 
calculates the distributions and probabilities to define the Bayesian model’s rules from the 
training data. The output ports produce the model and the model parameters respectively. In 

the configuration window you need to specify: 

 The class column (= the column containing the classes) 

 The default probability and the minimum standard deviation (almost 0) 

Figure 4.10. Learner and Predictor nodes. 
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 The maximum number of unique 

nominal values allowed per column. 

If a column contains more than this 

maximum number of unique nominal 

values, it will be excluded from the 

training process. 

 How to deal with missing values 

(skip vs. keep) 

  Compatibility of the output model 

with PMML 4.2 

Naïve Bayes Predictor 

The “Naïve Bayes Predictor” node applies 
an existing Bayesian model to the input 

data table.  

All necessary configuration settings are 

available in the input model.  

In the configuration window you can only: 

 Append the normalized class 

distribution values for all classes to 

the input data table 

  Customize the column name for the 

predicted class 

Note. All predictor nodes expose the same configuration window: one option to append 

predicted class probabilities/normalized distributions and one option to change the default 

prediction class column name. 

In the “My First Model” workflow we connected a “Naïve Bayes Learner” node to the “CSV 
Reader” node that reads the training data set. In the configuration window of the “Naïve Bayes 
Learner”, we specified “income” as the class/target column, we opted to skip rows with missing 

values in the model estimation and to skip a column if more than 20 nominal values were found.  

Figure 4.11. Configuration window for the Naïve Bayes 

Learner node. 

Figure 4.12. Configuration window for the Naïve Bayes 

Predictor node. 
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After setting this configuration, a yellow triangle appears under the “Naïve Bayes Learner” to 
say that column “native country” in the input data set has too many (> 20 as from configuration 
settings) nominal values and will be ignored. We then run the “Execute” option for the “Naïve 
Bayes Learner” node. 

The next step involves connecting a “Naïve Bayes Predictor” node to the “CSV Reader” node to 
read the test set through the data port; the “Naïve Bayes Predictor” node is then also connected 
to the output port of the “Naïve Bayes Learner” node through the model port. 

After execution, the “Naïve Bayes Predictor” shows a new column appended to the output table: 
“Prediction (income)”. This column contains the class assignments for each row performed by 
the Bayesian model. How correct these assignments are, that is how good the performance of 

the model is, can only be evaluated by comparing them with the original labels in “income”. 

If the flag to append the probability values for each output class was enabled, in the final data 

table there will be as many new columns as there are values in the class column; each column 

contains the probability for a given class value according to the trained Bayesian model. 

KNIME has a whole “Analytics”  “Mining”  “Scoring” category with nodes that measure the 
classifiers’ performances. The most straightforward of these evaluation nodes is the “Scorer” 

Figure 4.13. Bayes Model's classified data. 
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node. We will use the “Scorer (JavaScript)” node because it also offers a nicer visualization of 
the results. 

Scorer (JavaScript) 

The “Scorer” node compares the values of 
two columns (target column and prediction 

column) in the data table; based on this 

comparison it shows the confusion matrix 

and some accuracy measures.  

This node produces three output data 

tables: the confusion matrix, the statistics 

of correctly identified rows for each class, 

and the overall accuracy measures as set 

in the configuration window. 

This node has a View option, where the 

confusion matrix and some accuracy 

metrics are displayed.  

The configuration window has three tabs: 

“Scorer Options”, “Statistics Options”, 
“Control Options”.  

Tab “Scorer Options” requires the selection 
of the two columns to compare (“Actual 
Column” and “Predicted Column”) and the 
sorting to be used in the evaluation 

strategy. The flag “Ignore missing values”, 
if unchecked, makes the node fail if missing values are encountered in one of the two columns 

to compare. All other options are related to the display of the node view. 

Tab “Statistics Options” includes all accuracy measures and false/true positive/ negative 
numbers to calculate. 

Like all JavaScript based nodes, this node produces a view with some degree of interactivity. 

Interactivity options are defined in the tab “Control Options”. 

Figure 4.14. Configuration window of the Scorer (JavaScript) 

node. 
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We added a “Scorer (JavaScript)” node into the workflow “My First Model”. The node is 
connected to the data output port of the “Naïve Bayes Predictor”. The first column with the 
original reference values is “income”; the second column with the class estimation is the 

column called “Prediction (income)” which is produced by the “Naïve Bayes Predictor” node. 
During execution, values are then compared row by row and the confusion matrix and the 

consequent accuracy measures are calculated. 

We can see the confusion matrix and the accuracy measures for the compared columns by 

selecting either the last three items or the item “Interactive View: Confusion Matrix” in the 
context-menu of the “Scorer (JavaScript)” node. 

Confusion Matrix 

In Figure 4.14, you can see the confusion matrix generated by the “Scorer” node. The confusion 
matrix shows the number of matches between the values in the target column and the values 

in the predicted column. 

The values found in the target column are reported as Row IDs; the values found in the predicted 

column are reported as column headers. Since “income” has only two possible values – “>50K” 
and “<=50K” – the reading of the confusion matrix is quite simple.  

The first cell contains the number of data rows that had an income “<=50K” and were correctly 
classified as having an income “<=50K”. The last cell, the one identified as (“>50K”, “>50K”), 
contains the number of data rows with an income “>50K” and that were correctly classified as 

Figure 4.15. True Positives, False Negatives, True Negatives, and False 

Positives in the Confusion Matrix for "<=50K" as the positive class. 
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having an income “>50K”. The other two cells represent the number of data rows with original 
income “<=50K” and incorrectly classified as having an income “>50K” and vice versa. 

The cells along the diagonal from the top left corner to the lower right corner contain the 

numbers of correctly classified events. The opposite diagonal, the one from the top right corner 

to the lower left corner, contains the numbers of incorrectly classified events, that is the errors 

that we want to minimize.  

The sum across one row of the confusion matrix indicates the total number of data rows in one 

class according to the labels in the original data set. The sum across one column indicates the 

number of data rows assigned to one class by the model. The sum of all columns and the sum 

of all rows must therefore be the same, since they represent the total number of data.  

In our “Scorer” node, we selected the first column as the target classification column “income” 
and the second column as the output column of the Bayesian classifier. Thus, this confusion 

matrix says that 9554 data rows were correctly classified as having an income “<=50K; 2902 
were correctly classified as having an income “>50K”; and 876 and 2031 data rows were 
incorrectly classified.  

Accuracy Measures 

The second port of the “Scorer” node presents a number of accuracy measures5,6. In a binary 

classification (or in any classification), we need to choose one of the classes as the positive 

class. Such choice is completely arbitrary and usually dictated by the data context. Once one 

of the classes has been assumed as the positive one, the following definitions can take place: 

 True Positives is the number of data rows belonging to the positive class in the original 

data set and correctly classified as belonging to that class. 

 True Negatives is the number of data rows that do not belong to the positive class in the 

original data set and are classified as not belonging to that class. 

 False Positives is the number of data rows that do not belong to the positive class but are 

classified as if they do. 

 False Negatives is the number of data rows that belong to the positive class but are 

assigned to a different class by the model.  

 
5 D. L. Olson, D. Delen, “Advanced Data Mining Techniques” Springer; 2008 

6 D.G. Altman, J.M. Bland, “Diagnostic tests. 1: Sensitivity and specificity” BMJ 308 (6943): 1552; 1994 
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In our case, if we arbitrarily choose “<=50K” as the positive class, the True Positives are in the 
first cell, identified by (“<=50K”, “<=50K”); the False Negatives are in the adjacent cell; the False 
Positives are below it; and the True Negatives are in the remaining diagonal cell.  

On the basis of these True Positives (TP), True Negatives (TN), False Positives (FP), and False 

Negatives (FN) numbers, a number of correctness measures can be defined, each measure 

enhancing some aspect of the correctness of the classification task. These accuracy measures 

are provided in the lower output port of the “Scorer” node. 

Let’s see how they are defined. 

 𝑆𝑒𝑛𝑠𝑖𝑡𝑣𝑖𝑡𝑦 =  (   ) 
 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  (   ) 

“Sensitivity” measures the model’s capability to recognize one class correctly. If all instances 
of a given class are recognized correctly, the result is 0 “False Negatives” for that class; which 
means that no items of that class are assigned to another class. “Sensitivity” is then 1.0 for 
that class. 

“Specificity” measures the model’s capability of recognizing what does not belong to a given 
class. If the model recognizes what does not belong to that class, the result is 0 “False 
Positives”; which means no extraneous data rows are misclassified in my class. “Specificity is 
then 1.0 for that class. 

In a two-class problem, “Sensitivity” and “Specificity” are used to plot the ROC Curves (see “ROC 
Curve” later on in this section). 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  (   ) = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 

 𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛 =  (   ) 
“Precision” and “Recall” are two widely used statistical accuracy measures. “Precision” can be 
seen as a measure of exactness or fidelity, whereas “Recall” is a measure of completeness. 

In a classification task, the “Precision” for a class is the number of “True Positives” (i.e. the 
number of items correctly labeled as belonging to that class) divided by the total number of 

elements labeled as belonging to that class. “Recall” is defined as the number of “True 
Positives” divided by the total number of elements that actually belong to that class. “Recall” 
has the same definition as “Sensitivity”. 

 𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ ( ∗ )( ) 
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The F-measure can be interpreted as a weighted average of “Precision” and “Recall”, where the 
F-measure reaches its best value at 1 and worst score at 0.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ( )( ) 
being TP = True Positives, FP = False Positives, TN = True Negatives, and FN = False Negatives. 

Cohen’s Kappa is a measure of inter-rater agreement as 
( ( ))( )  where 𝑃(𝑐ℎ𝑎𝑛𝑐𝑒) is 

the average probability of  classifying events as positive or negative, weighted for the 

respective a priori probability of the positive and negative class. The Cohen’s kappa gives a 

more balanced accuracy estimation in case of strong differences in the class distributions. 

Accuracy” is an overall measure and is calculated across all classes. An accuracy of 1.0 means 
that the classified values are exactly the same as the original class values.  

All these accuracy measures are reported in the data table in the second port at the bottom of 

the “Scorer (JavaScript)” node and give us information about the correctness and 
completeness of our model. 

View: Confusion Matrix 

The context menu of the “Scorer” node offers a 

possibility to visualize the confusion matrix:  

 Item “Open output port” > “1: Confusion matrix” 
> “Table”  

The context menu of the Scorer node has an option 

called “Open view”, which shows us the Scorer view, 
and under that, we have the confusion matrix table 

and the overall statistics. The tab is “Confusion 
Matrix”, then the next option is to view the “Class 
Statistics table, and the final table is the “Overall 
Statistics Table”. 

Figure 4.16. Accuracy statistics table from the Scorer (JavaScript) node with the accuracy measures for each class. 

Figure 4.17. The context menu of the Scorer 

(JavaScript) node. 
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Like all JavaScript based nodes in KNIME Analytics Platform, also this node includes a menu 

button in the top right corner. The menu opening, after clicking this button, allows you to change 

the view display, such as title and subtitle, but also to 

include (or not) summary values, class statistics, overall 

statistics and so on. Finally, cell content in the confusion 

matrix is selectable. 

Decision Tree 

Using the same workflow “My First Model”, let’s now 
apply another quite popular classifier: a decision tree7,8. 

The Decision Tree algorithm is a supervised algorithm 

and therefore consists of two phases – training and 

testing - like the Naïve Bayes classifier that we have seen 

in the previous section. The decision tree is implemented 

in KNIME with two nodes: one node for training and one 

node for testing, i.e.:  

 The “Decision Tree Learner” node 

 The “Decision Tree Predictor” node 

 
7 J.R. Quinlan, "C4.5 Programs for machine learning", Morgan Kaufmann Publishers Inc. , 1993 

8 J. Shafer, R. Agrawal, M. Mehta, "SPRINT: A Scalable Parallel Classifier for Data Mining", Proceedings of the 26th 

International Conference on Very Large Data Bases, Morgan Kaufmann Publishers Inc. ,1996 

(http://citeseer.ist.psu.edu/shafer96sprint.html) 

Figure 4.18. Confusion Matrix from the Interactive View of the Scorer node. 

Figure 4.19. Two nodes implement a 

Decision Tree: the Decision Tree Learner 

node and the Decision Tree Predictor node. 
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 The “Decision Tree Learner” node takes a data set as input (black triangle), learns the 
rules necessary to perform the desired task, and produces the final model at the output 

port (blue square). Let’s connect a “Decision Tree Learner” node to the “CSV Reader” node 
named “training set”.  

Let’s also create a “Decision Tree Predictor” node to follow the “Decision Tree Learner” node. 
The “Decision Tree Predictor” node has two inputs:   

 A data input (black triangle) with new data to be classified 

 A model input (blue square) with the model parameters produced by a “Decision Tree 
Learner” node 

Decision Tree Learner: “Options” Tab 

The “Decision Tree Learner” node builds a decision tree from the input training data. In the 
configuration window you need to specify: 

General  

 The class column. The target attribute must be nominal (String). 

 The quality measure for split calculation: “Gini Index” or “Gain Ratio”. 

 The pruning method: “No Pruning” or a pruning based on the “Minimum Description 
Length (MDL)” principle7,8. The option Reduced Error Pruning, if checked, applies a simple 

post-processing pruning. 

 The stopping criterion: the minimum number of records in each decision tree’s node. If 
one node has fewer records than this minimum number, the algorithm stops further 

splitting of this branch. The higher the number, the shallower the tree. 

 The number of records to store for view: the maximum number of rows to store for the 

hilite functionality. A high number slows down the algorithm execution. 

 The “Average Split Point” flag. For numerical attributes, the user has to choose one of two 
splitting strategies: 

 The split point is calculated as the mean value between the two partitions’ attributes 
(“Average Split Point” flag enabled)  
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 The split point is set to the largest 

value of the lower partition (“Average 
Split Point” flag disabled)  

 The Number of threads on which to run 

the node (default Number threads = 2 

* number of processors available to 

KNIME). 

Root Split 

If you know that one attribute must be 

important for the classification, you can 

force it on the root node of the tree, by 

enabling “Force root split column” and 
selecting the “Root split column”. 

Binary nominal splits 

Here you can define whether Binary nominal 

splits apply to nominal attributes. In this 

case you can set the threshold Maximum # 

of nominal splits, up to which an accurate 

split is calculated instead of just a heuristic. The heuristic, though less precise, reduces the 

computational load. 

“Filter invalid attribute values …” inspects the tree at the end of the training procedure and 
removes possible duplicates and incongruences. 

Figure 4.20. Decision Tree Learner node: the "Options" tab. 



Chapter 4: My First Model 

146 

Decision Tree Learner: “PMML Settings” Tab 

The configuration window of the “Decision Tree 
Learner” node offers two tabs: “Options” 
(described above) and “PMML Settings”. The 
“PMML Settings” tab deals with settings for the 
final PMML model. 

How to deal with the no true child problem 

Sometimes, the evaluation process reaches a node 

in the tree for which the required attribute shows 

an out of training domain value. In this case, for the 

predicted class you can: 

 Use the majority class in the previous node 

(“returnLastPrediction” option) 

 Return a missing value 

(“returnNullPrediction” option) 

How to deal with missing values 

Sometimes, the evaluation process reaches a node in the tree for which the required attribute 

shows a missing value. In this case, for the predicted class you can: 

 Use the majority class in the previous node (“lastPrediction” option) 

 Revert to the no true child strategy (“none” option) 

 

We trained the “Decision Tree Learner” node with: 

 Class column = “income” 

 Gini Index as quality measure 

 Pruning = No Pruning 

 Stopping criterion = 4 data points per node 

 Number of records for hiliting = 10000 

 Split point calculated as the average point between the two partitions 

Figure 4.21. Decision Tree Learner node: the 

"PMML Settings" tab. 
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 Binary splits for nominal values 

 Maximum number of distinct nominal value allowed in a column = 10 

 8 as number of threads, since we are working on a 4-core machine 

We can now run the “Execute” command and therefore train our decision tree model. At the 
end of the training phase the model is available at the output port (blue square) of the “Decision 
Tree Learner” node. 

The “Decision Tree Predictor” node has only one output table, consisting of the original data 
set with the appended prediction column and optionally the columns with the probability for 

each class, like all other predictor nodes. The “Decision Tree Predictor” node was introduced 
to get the test data from the “CSV Reader” node and the model from the “Decision Tree Learner” 
node, with the option to append the normalized class distribution at the end of the prediction 

data table. 

Decision Tree Predictor 

The “Decision Tree Predictor” node imports a Decision Tree model from the input port and 
applies it to the input data table.  

In the configuration window you can: 

 Define the maximum 

number of records for 

hiliting (again a heritage of 

the old “Data Views” 
visualization nodes) 

 Define a custom name for 

the output column with the 

predicted class 

 Append the columns with 

the normalized distribution 

of each class prediction to 

the output data set Figure 4.22. Configuration window of the Decision Tree Predictor node. 
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Decision Tree Views 

In the context menu of both the “Decision Tree Predictor” node and the “Decision Tree Learner” 
node, we can see two options to visualize the decision tree rules: 

 “View: Decision Tree View (simple)” 

 “View: Decision Tree View ” 

 Sub-category “Mining”  “Decision Tree” also includes a “Decision Tree To Image” node 
and a “Decision Tree to Ruleset” node. The “Decision Tree To Image” node converts the 
view of the decision tree model into an image. The “Decision Tree to Ruleset” node 
converts the decision tree splits into a set of rules. 

Let’s have a look at the decision tree views.  

The more complex view (“Decision Tree View”) 
displays each branch of the decision tree as a 

rectangle. The data covered by this branch are shown 

inside the rectangle and the rule implementing the 

branch is displayed on top of the rectangle. 

In the view, a branch can shows a little sign “+” 
indicating the possibility to expand the branch with 

more nodes. 

The decision tree always starts with a “Root” branch 
that contains all training data. The “Root” branch in 
our decision tree is labeled “<=50K”, because it covers 
11490 “<=50K” records out of 153362 from the 
training set. A majority vote is used to label each 

branch of the decision tree.  Figure 4.24. Context Menu of the Decision Tree 

Predictor node. 

Normalized Class Distributions Final Prediction 

Figure 4.23. Output data table from the Decision Tree Predictor node. 
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The first split happens in the “relationship” column. From the “Root” branch the data rows are 
separated into a number of sub-branches according to their value of the “relationship” attribute. 
Each branch is labeled with a predicted class coming from its cover factor. For example, the 

branch defined by the split condition “relationship = Wife, Husband” is labeled as “<=50K” since 
during the training phase it covered 3788 “<=50K” records out of its incoming 7074 training 
patterns. Fraction values in the total number of training patterns can occur when missing 

values are encountered during training. In this event only fractions of the patterns are passed 

down to the following branches.  

Inside each branch more splits are performed, and data rows are separated into different 

branches and so on, deeper and deeper into the tree, until the final leaves. The final leaves 

produce the final prediction/class.  

If you click on “open view”, a branch of the decision tree can be selected by clicking it. Selected 

branches are shown with a black rectangle border (simple view) or with a darker background 

(complex view). A selection of multiple branches is not possible. 

The “Decision Tree View” window has a top menu with three items.  

“File” has the usual options: 

 “Always on top” ensures that this window is always visible 

 “Export as PNG or SVG” exports this window as a picture to be used in a report for example 

 “Close” closes the window 

“Hilite” contains the hilite commands to work together with the “Data Views” nodes. 

“Tree” offers the commands to expand and collapse the tree branches: 

 “Expand Selected Branch” opens the sub-branches, if any, of a selected branch of the tree  

 “Collapse Selected Branch” closes the sub-branches, if any, of a selected branch of the 

tree 

On the right side, there is an overview of the decision tree. This is particularly useful if the 

decision tree is big and very bushy. In the same panel on the bottom, there is a zoom 

functionality to explore the tree with the most suitable resolution. 

The “Scorer” node at the end measures the success performance for the decision tree as well, 
which amounts to 83% accuracy and 53% Cohen’s kappa. The Naive Bayes classifier produced 
81% accuracy and 54% Cohen’s kappa. This means that the two model performances are 
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comparable, even though the decision tree performs slightly better on one of the two classes, 

probably the more populated one. 

Another possible visualization for a decision tree consists of the interactive view produced by 

the “Decision Tree View” node.  This is another one of the JavaScript based visualization nodes 

and it is dedicated to visualize the splits in a decision tree model (Figure 4.25).  

Another possible evaluation of the model performance could be achieved through an ROC 

curve. Actually, both models, the naïve Bayes and the decision tree, could be evaluated and 

compared by means of an ROC curve. Of course, there is a JavaScript based node that 

produces an interactive visualization of a number of ROC curves. To draw an ROC curve, the 

target classification column has to contain two class labels only. One of them is identified as 

the positive class. A threshold is then incrementally applied to the column containing the 

probabilities for the positive class, therefore defining the true positives rate and the false 

positives rate for each threshold value4. At each step, the classification is performed as: 

IF   Probability of positive class > threshold => positive class 

ELSE => negative class 

The ROC Curve, in particular the area below the ROC curve, gives an indication of the predictor 

performance. It is possible to display multiple curves for different columns in the ROC Curve 

View if we want to compare the performances of more than one classifier. From Figure 4.28 

Figure 4.25. View of the decision tree model created by the “Decision Tree Learner” node. 
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we can see that the two classification models have very similar performances (Area under the 

Curve = 89% for Naïve Bayes, Area under the Curve = 85% for the decision tree). 

As for all JavaScript based visualization nodes, the configuration window of this node contains 

three tabs: “Decision Tree Plot Options”, “General Plot Options”, and “View Controls”. 

“Decision Tree Plot Options” tab defines the content to plot, such as the number of rows and 
the number of levels to be expanded already at view opening. Of course, the higher the number 

of rows to visualize, the slower the node execution. It also contains the flag to create an image 

from the produced view.  

“Decision Tree Plot Options” tab defines general 
plot properties, such as background color, tree 

area background color, node color, title and 

subtitle, and formatting. 

“View Controls” tab sets the plot interactivity, like 
zoom and title and subtitle editing.  

Figure 4.26 shows a possible final view of the 

decision tree generated with a “Decision Tree 
View” node.  

In this example predictions by the decision tree 

and the Naïve Bayes algorithms are combined 

Figure 4.26. View of the decision tree model as produced by the “Decision Tree View” node. 

Figure 4.27. Configuration window of the Decision 

Tree View node: the “Decision Tree Plot Options” tab. 
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together via a “Joiner” node. We will omit details about the “Joiner” node in this chapter and we 
will explain this node more in detail in the next chapter. For now, it is enough to know that the 

“Joiner” node appends collates together columns from two input tables by matching key values 
in selected columns. 

ROC Curve 

The “ROC Curve” node draws a number of ROC curves for a two-class classification problem. 

The configuration window covers four tabs: “ROC Curve Settings”, “General Plot Options”, “Axis 
Configuration”, and “View Controls”. 

ROC Curve Settings 

 The column containing the reference class  

 The positive value of the class (arbitrarily assumed as positive) 

 The column(s) with the probabilities for the positive class 

 The limit on the number of points to plot. Remember less points less accurate curve, more 

points slower execution. 

 The selection of the columns with the probabilities for the positive class is performed by 

means of an “Excludes”/”Includes” frame. 

General Plot Options: Here all plot settings are required: image size, formatting, background 

colors, etc. 

Axis Control: Contains all settings about the plot axis. 

View Controls: Define the level of interactivity of the curve view, such as label or title editing.  
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The node outputs the image (optionally) of the produced ROC curve and the Area under the 

Curve (AuC) for the probability columns. 

 

 

Figure 4.28. View of the ROC Curve node. 
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Figure 4.29. Configuration window of the ROC Curve node. 
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Artificial Neural Network 

We move on now to a neural network and specifically to a Multilayer Perceptron (MLP) 

architecture, with one hidden layer, and the Back Propagation learning algorithm. The neural 

network paradigm is available in the “Mining” category and consists of: 

 A learner node (“RProp MLP Learner”)  

 A predictor node (“Multilayer Perceptron Predictor”) 

The learner node learns the rules to separate the input patterns of the training set, packages 

them into a model, and assigns them to the output port.  

The predictor node applies the rules from the model built by the learner node to a data set with 

new records. 

Figure 4.30. Workflow "My First Model". 
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RProp MLP Learner  

The “RProp MLP Learner” node builds and 
trains a Multilayer Perceptron with the 

BackPropagation algorithm. In the 

configuration window you need to 

specify: 

 The maximum number of iterations 

for the Back Propagation algorithm 

 The number of hidden layers of the 

neural architecture 

 The number of neurons per each 

hidden layer  

 The class column, i.e. the column 

containing the target classes. The class column has to be of type String (nominal values) 

 You also need to specify what to do with missing values. The algorithm does not work if 

missing values are present. If you have missing values you need to either transform them 

earlier on in your workflow or ignore them during training. To ignore the missing values 

just mark the corresponding checkbox in the configuration window. 

 Finally, you need to specify a seed to make the weight random initialization repeatable. 

The “RProp MLP Learner” only accepts numerical inputs. String data columns will not be 
processed as input attributes. 

We created a new workflow in the workflow group “Chapter4” and named it “My First ANN”. We 
also used the data sets “training set” and “test set” derived from the adult.data data set in the 
“Data Preparation” workflow. We set the classification/prediction task to predict the kind of 

income each person/record has. “Income” is a string column with only two values: “>50K” and 
“<=50K”. 

First, we inserted two “CSV Reader” nodes: one to read the training set and one to read the test 
set prepared by the “Data Preparation” workflow earlier on in this chapter.  

Of all the string attributes in the adult data set, we decided to keep only the attribute “sex”, since 
we think that sex is an important discriminative variable in predicting the income of a person. 

Of course we also kept the “Income” column to be the reference class. We removed all other 

string attributes.  

Figure 4.31. Configuration window of the RProp MLP Learner 

node. 
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The attribute “sex”, being of type String, could not be used as it was and it has been converted 
into a binary variable “sex_01”, according to the following rule: 

IF    $sex$   = “Male”      =>  $sex_01$  = “-1” 
IF    $sex$   = “Female”   =>  $sex_01$  = “+1” 

In order to implement this rule, we used a “Rule Engine” node. “sex_01” is the newly created 
Integer column containing the binary values for sex. We then used a “Column Filter” node to 
exclude all remaining string columns besides “Income”.  

Multilayer Perceptron requires numerical data in the [0,1] range. In order to comply with that, a 

“Normalizer” node was placed after the “Column Filter” node to normalize all numerical data 
columns to fall into the range [0,1]. This sequence of transformations (“Rule Engine” on “sex”, 
“Column Filter” to keep only numerical attributes and the “Income” data column, and the [0,1] 
normalization”) was applied on both training and test set. 

We then applied the “RProp MLP Learner” node to build an MLP neural network with 6 input 
variables (age, education-num, fnlwgt, capital-gain, capital-loss, hours-per-week, sex_01), 1 

hidden layer with 4 neurons, and 2 output neurons, i.e. one output neuron for each “Income” 
class. We trained it on the training set data with a maximum number of iterations of 100.  

After training, we applied the MLP model to the test set’s data by using a “Multilayer Perceptron 
Predictor” node. The neural network’s predictor node applies the rules from the model built by 
the learner node to a data set with new records. The predictor node has two input ports:  

 A data input (black triangle) with the new data to be classified  

 A model input (blue square) with the model parameters produced by a “RProp MLP 
Learner” node 

The predictor node has one output port, where the original data set plus the predicted classes 

and optionally the class distributions are produced. 

Multilayer Perceptron Predictor 

The “Multilayer Perceptron Predictor” node takes an MLP model, generated by an “RProp MLP 
Learner” node, at the model input port (blue square) and applies it to the input data table at the 
input data port (black triangle).  

The “Multilayer Perceptron Predictor” node can be found in the “Node Repository” in the 
“Analytics”  “Mining”  “Neural Network”  “MLP” category. 
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The only settings required for its 

configuration, like for all other predictor 

nodes, are a checkbox to append the 

normalized class distributions to the 

input data table and a possible 

customized name for the output class 

column.  

Classified Data 

Let’s visualize the results of the MLP 
Prediction: 

 Right-click the “Multilayer 
Perceptron Predictor” node 

 Select “Classified data” 

The “Classified Data” data table contains the final predicted classes in the “Prediction 
(income)” column and the values of the two output neurons in the columns “P (Income >50K)” 
and “P(Income<=50K)”.  

The firing value of the two output neurons is represented by a red-green bar instead of a double 

number. Red means a low number (< 0.5), green a high number (> 0.5). The highest firing output 

neuron decides the prediction class of the data row.  

To change the rendering of the neuron firing values, you right-click the column header and 

select a new rendering under “Available Renderers”, like for example “Standard Double”. 

We have used the Neural Network paradigm in a two-class classification problem (“Income > 
50K” or “Income <=50K”). We can now apply an “ROC Curve " node to the results of the 
“Multilayer Perceptron Predictor” node. We identified: 

 The class column as column “Income” 

 The positive value “<=50K” in class column “Income” 

 The column “P(Income <=50K)” as the column containing the probability/score for the 
positive class 

Figure 4.32. Configuration window of the Multilayer Perceptron 

Predictor node. 
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The resulting ROC Curve shows an Area under the Curve around 0.85. 

Write/Read Models to/from File 

Once we have trained a model and ascertained that it works well enough for our expectations, 

it would be nice if we could reuse the same model in other similar applications on new data. 

This means that we should be able to recycle the model in other workflows as well. 

Model Writer 

The “Model Writer” node takes a model at the input port (gray square) and writes it into a file 
by using the KNIME internal format. The “Model Writer” node is located in the “IO”  “Write” 
category in the “Node Repository” panel. 

The configuration window only requires: 

Figure 4.33. Output Table of the Multilayer Perceptron Predictor node. 

Classified Data Final Prediction 



Chapter 4: My First Model 

160 

 The path of the output file (*.zip) (knime:// protocol is also accepted) 

 The flag to override the file, if the file exists 

 

The final workflow “My First ANN” is shown in the figure below. 

At the same time, KNIME also provides a node to read a model from a file, the “Model Reader” 
node, located in the “IO”  “Read” category in the “Node Repository” panel. 

Figure 4.34. Configuration window of the Model Writer node. 
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Model Reader 

The “Model Reader” node reads a model from a file using the KNIME internal format and makes 
it available at the output port (gray square).  

The configuration window only needs: 

 The path of the input file (*.pmml) (knime:// protocol is also accepted) 

Drag and drop of a model file from a data folder automatically creates a “Model Reader” node 
with the right configuration settings. 

In this last part of the chapter, we would like to show a few more nodes that are commonly 

used in data analytics. We will build a new workflow, named “Clustering and Regression”, in the 
workflow group “Chapter4” to explain these nodes.  

Figure 4.35. Workflow "My First ANN". 
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We will use the same data that we used for the previous two workflows, “training set” and “test 
set”, created in the “Data Preparation” workflow. The first two nodes in the workflow will then 
be two “CSV Reader” nodes, one to read the training set and one to read the test set data, as in 

the previous workflows. 

Statistics 

The “Statistics” node calculates statistic variables on the input data, such as: 

For numerical columns (available in a table on output port 0): 

 minimum 

 maximum 

 Mean 

 Standard deviation 

 skewness 

 Histogram 

 variance 

 median 

 overall sum 

 kurtosis 

 number of NaN/missing values 

Figure 4.36. Configuration window of the Model Reader node. 
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For nominal columns (available in a table on output port 1 and 2): 

 number of occurrences of nominal values 

 Number of missing values 

 Histogram of nominal values 

The “Statistics” node is located in the “Node Repository” panel in the “Analytics”  “Statistics” 
category. The configuration window requires: 

 The selection of the nominal columns on which to calculate the statistical measures (the 

statistical measures for numerical variables are calculated on all numerical columns by 

default).  

 The maximum number of most frequent and infrequent values to display in the view 

 The maximum number of possible values per column. This is to avoid long lists of nominal 

values. 

 Whether to calculate the median value  

 All the statistical measures, described in the table above, are available at the node output 

ports as well as in the node View.  

 Selection of the input data columns is performed by means of the column selection 

framework: by manual selection with “Include/Exclude” panels; by type selection, by 
Wildcard/Regex expression selection.  

Figure 4.37. Configuration window of the Statistics node. Figure 4.38. Context menu of 

the Statistics node. 
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The “Statistics” node has one visualization option: the “Open View” and the data tables on the 
output ports. The data tables can be accessed from the node monitor below. 

The node has three output ports and the “Statistics View” has three specular tabs. Output port 
“Statistics Table” corresponds to tab “Numeric” in the view; output port “nominal Statistical 
Values” corresponds to tab “Nominal” in the view; and output port “Occurrences Table” 
corresponds to tab “Top/Bottom” in the view.  

Tab “Numeric” contains a number of statistical measures calculated on all numerical columns, 
with an approximate histogram. Each row then with all the statistical measures and the rough 

histogram offers an idea of the statistical properties and distribution of the values in a numeric 

data column. 

Similarly, the “Nominal” and the “Top/Bottom” tabs give an idea of the statistical properties of 
the values in a nominal data column. 

Note. The statistics of nominal columns are calculated only for the nominal columns 

included in the configuration window. 

Figure 4.39. The Numeric tab of the Statistics node view displays statistical measures and histogram calculated on 

all numerical columns. 
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In our workflow’s node we excluded the column “marital-status” from the nominal columns and 
the corresponding column pair “marital-status” and “marital status_Count” is not in the 
“Occurrences Table”. 

In “Statistics View”  tab “Nominal Columns” we find the same information, but the lists of 
nominal values are sorted by frequency. For each column we find two table cells: one at the top 

for the most frequent (top 20) nominal values in the column and one at the bottom for the least 

frequent (bottom 20) nominal values in the column. 

Regression 

Another very common task in data analysis is the calculation of the linear regression2,3,4. In the 

“Node Repository” panel, in the “Analytics”  “Statistics”  “Regression” category, there are 
two learner nodes to learn the regression parameters: one node performs a multivariate linear 

regression, the other node a multivariate polynomial regression. Both regression learner nodes 

share the predictor node. Regression Learner nodes have two input ports and two output ports. 

At input, the node is fed with the training data and optionally with a pre-existing model. After 

execution, the node produces the regression model and the statistical properties of the model 

in a data table. The predictor node takes the regression model, linear or polynomial, as input 

and applies it to new input data rows to predict their response. In this book, we will only show 

how to implement the linear regression.  

The models we have seen so far were classifiers; that is, they were trying to predict nominal 

values (classes) for each data row. The linear regression is a fitting model; that is a model that 

tries to predict numerical values. In this case, the target data column must be a numerical 

column with numerical values to be approximated through the linear regression fitting. 

Figure 4.40. The "Occurrence Table" contains the number of occurences of nominal values 

calculated only on the selected nominal columns. 
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Linear Regression Learner 

The “Linear Regression Learner” node performs a multivariate linear regression on a target 
column, i.e., the response. The “Linear Regression (Learner)” node can be found in the “Node 
Repository” in category “Analytics”  “Mining”  “Regression”. 

In the configuration window you need to specify: 

 The target column for which the regression is calculated 

 The columns to be used as independent variables in the linear regression 

 The number of the starting row and the number of rows to be visualized in the node’s 
scatter plot view 

Figure 4.41. “Statistics View“  Tab “Top/Bottom” with the number of occurrences of nominal values calculated only 
on the selected nominal columns and sorted in descending order. 



Chapter 4: My First Model 

167 

 The missing value handling strategy 

 A default offset value to use (if any) 

Selection of the input data columns is performed by means of the column selection framework: 

by manual selection with “Include/Exclude” panels; by type selection, by Wildcard/Regex 
expression selection. 

The node outputs the regression model as well as the model’s coefficients and statistics. 

Note. The “Linear Regression Learner” node can only deal with numerical values. Nominal 
columns are automatically discretized using a dummy coding available for categorical 

variables in regression http://en.wikipedia.org/wiki/Categorical_variable#Categorical_ 

variables_in_regression. 

We connected a “Linear Regression Learner” node to the “CSV Reader” with the training data. 
We wanted to predict the columns “hours-per-week” by using the columns “age”, “education-

Figure 4.42. Configuration window for the Linear Regression Learner node. 
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num”, “capital-gain”, “capital-loss”, “native-country”, and “income” as independent variables for 
the linear regression. The “Linear Regression Learner” node produces the regression model at 
the node’s output port.  The regression model is subsequently fed into a “Regression Predictor” 
node and used to predict new values for a different data set. 

Regression Predictor 

The “Regression Predictor” node obtains 
a regression model from one of its input 

ports (blue square) and data from the 

other input port (black triangle). It uses 

the model and the data to make a data-

based prediction. 

Since all information is already available 

in the model, this node only needs the 

minimal predictor settings: an alternative 

customized name for the output 

classification column. 

The “Regression Predictor” node is 
located in the “Analytics”  “Mining”  

“Regression” category in the “Node Repository” panel.  

Clustering 

The last topic that we want to discuss in this chapter is clustering. There are many clustering 

techniques around and KNIME has implemented a number of them.  

As in data models we already looked at, we have a trainer node and a predictor node for the 

clustering models. The learner nodes implement a clustering algorithm; that is they build a 

number of clusters by grouping together similar patterns and calculate their representative 

prototypes. The predictor then assigns a new data vector to the cluster with the nearest 

prototype. Such a predictor is not specific to only one clustering technique, but it works for any 

clustering algorithm that requires a cluster assignment on the basis of a distance function in 

the prediction phase. This leads to many specific clustering learner nodes (implementing 

different clustering procedures) but to only one clustering predictor node.  

Figure 4.43. Configuration window for the Regression 

Predictor node. 
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A learner node could implement the k-Means algorithm, for example. The k-Means procedure 

builds k clusters on the training data, where k is a predefined number2,3,4. The algorithm iterates 

multiple times over the data and terminates when the cluster assignments no longer change. 

Note that the k clusters are only built on the basis of a similarity (distance) criterion. k-Means 

does not take into account the real class of each data row: it is an unsupervised classification 

algorithm. The predictor performs a crisp classification that assigns a data vector to only one 

of the k clusters which were built on the training data; in particular it assigns the data vector to 

the cluster with the nearest prototype.  

We will focus on the k-Means algorithm to give you an example of how clustering can be 

implemented with KNIME (see the “Clustering and Regression” workflow). 

k-Means Clustering 

The “k-Means” node groups input patterns into k clusters on the basis of a distance criterion 
and calculates their prototypes. The prototypes are built as the mean value of the cluster 

patterns. This node takes the training data on the input port and presents the model at the blue 

squared output port and the training data with cluster assignment on the data output port 

(black triangle). The “k-Means” node can be found in the “Node Repository” in the “Analytics” 
 “Mining”  “Clustering” category. 

In the configuration window you need to specify: 

 The final number of clusters k  

 The maximum number of iterations to ensure that the learning operation converges within 

a reasonable time 

 The columns to be used to calculate the distance and the prototypes  

 Flag “Always include all columns” is alternative to the column selection frame. 

Column selection is performed by means of an “Exclude”/”Include” frame. 

 The columns to be used for the distance calculation are listed in frame “Include”. All other 
columns are listed in frame “Exclude”. 

 To move from frame “Include” to frame “Exclude” and vice versa, use buttons “add” and 
“remove”. To move all columns to one frame or the other use buttons “add all” and 
“remove all”. 
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The “k-Means” node has a “Cluster View” option in the context-menu: “View: Cluster View”. The 
Cluster View shows the prototypes of the k clusters. 

Note. Since clustering algorithms are based on distance, a normalization is usually required 

to make all feature ranges comparable. In the “Clustering and Regression” workflow, we 
normalized the input features all into [0,1] by using a “Normalizer” node. 

The k-Means algorithm just defines the clusters in the input space on the basis of a 

representative subset of the same input space. Once the set of clusters is defined, new data 

rows need to be scored against it to find the cluster they belong to. To do that, we use the 

“Cluster Assigner” node. 

Cluster Assigner 

The “Cluster Assigner” node assigns test data to an existing set of prototypes that have been 
calculated by a clustering node such as the “k-Means” node. Each data row is assigned to its 
nearest prototype.  

Figure 4.44. Configuration window of the k-Means node. 
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The node takes a clustering model and a data set as inputs and produces a copy of the data 

set with an additional column containing the cluster assignments. 

The “Cluster Assigner” node is located in the “Analytics”  “Mining”  “Clustering” category in 
the “Node Repository” panel. 

It does not need any configuration settings specific to its cluster assignment task. 

Note. The “Cluster Assigner” node is not specific for the “k-Means” node. It performs the 
cluster assignment task from a cluster set based with any of the available clustering 

algorithms. 

Figure 4.45. Workflow "Clustering and Regression". 
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Hypothesis Testing 

A few nodes are available in KNIME to perform 

classical statistical hypothesis testing. Most of 

them can be found in “Analytics”  “Statistics”  

“Hypothesis Testing”: the single sample t-test, the 

paired t-test, the one way ANOVA, and the 

independent group t-test.  Only the node 

performing the chi-square test is located outside of 

the “Hypothesis Testing” sub-category into the 

“Crosstab” node. 

Additional newer nodes for statistical hypothesis testing are available under “KNIME Labs”  

“Statistics” in the “Node Repository” panel. 

4.5. Exercises 

Exercise 1 

Using the wine.data file (training set = 80% and test set = 20%), train a decision tree to recognize 

the class to which each wine belongs. Run the decision tree on the wine test set and measure 

the decision tree performance. In particular, we are interested in finding out how many false 

negatives for class 2 there are. 

Solution to Exercise 1 

In the “Decision Tree Learner” node we used column “class” as the class column. By default, 
the “CSV Reader” node reads the wine data class as Integer, since the classes are “1”, “2”, and 
“3”.  

If you use a decision tree, as we did, for the final classification, you need the column “Class” to 
be of nominal values, i.e., to be of String type. You have two options for that: 

 You read “Class” as String. In the “CSV Reader” configuration window, right-click column 

“Class” and change type from “Integer” to “String” 

Figure 4.46. The "Hypothesis Testing" sub-

category. 
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 You leave the default settings in the “CSV Reader” and then you use a “Number To String” 
node for the conversion 

We then used a “Scorer (JavaScript)” node to see how many False Negatives were produced in 
the accuracy statistics and/or in the confusion matrix.  

We open the view in the context menu and look for the number of records belonging to class 2 

(Y-axis) that are misclassified as class 3 (X-axis).  

Figure 4.47. Exercise 1: Workflow. 

Figure 4.48. Exercise 1: Confusion Matrix window of the Scorer (JavaScript) 

node. 
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There is only one record that has been misclassified to class 3 from class 2. 

Note. “Decision Tree Learner” node needs at least one nominal value to be used as 
classification column. 

Exercise 2 

Build a training set (80%) and a test set (20%) from the wine.data. Train a Multilayer Perceptron 

(MLP) on the training set to classify the data according to the values in column “Class”.  Next, 
apply the MLP to the test set and measure the model performance. 

Solution to Exercise 2 

We use a “Normalizer” node to scale the data before feeding them into the MLP. Since the wine 
dataset is very small, we used the whole data set to define the normalization parameters.  

The next step involved using a neural network with only one output neuron to model the three 

class values: “1”, “2”, and “3”. 

As a neuron has a continuous output value, its output has to be post-processed to assign a 

class in the form of “1”, “2”, and “3” to each data row. To do this we used a “Rule Engine” node 
that implements the following rule: 

IF           $neuron output$ <= 0.3         => class 1 

ELSE IF      $neuron output$ >0.3 AND $neuron output$ <0.6 => class 2 

ELSE IF      $neuron output$ >= 0.6     => class 3 

Figure 4.49. Exercise 2: Workflow. 
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The model performance is measured with a “Scorer (JavaScript)” node. Alternatively, you can 
explore the “Numerical Scorer” node to measure performances with numerical distances. 

Exercise 3 

Read the data web site 1.txt with a CSV Reader node. This data set describes the number of 

visitors to a web site for the year 2013. Compute a few statistical parameters on the number 

of visitors, such as the mean and the standard deviation. Train a Naïve Bayes model on the 

number of visitors to discover whether a specific data row refers to a weekend or to a business 

day. Finally, draw the ROC curve to visualize the Naïve Bayesian Classifier performance. 

Solution to Exercise 3 

We used a “Rule Engine” node to translate the column called “Day of Week” into a “weekend/not 
weekend” binary class. We filtered out the “Day of Week” column so as not to make the 
classification task too easy for the Naïve Bayesian Classifier. We trained the Bayesian Network 

on the binary class “weekend/not weekend”, and we built the ROC curve on the “weekend” class 
probability. 

 

Figure 4.50. Exercise 3: Workflow. 
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Figure 4.51. Exercise 3: ROC Curve on the results of the Bayesian Classifier. 
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Chapter 5: Preparing Data for Reporting 

5.1. Introduction 

One piece of a Data Science project 

is reporting. For example, it can be 

used to show the model scores to 

the management board or to 

quantify performances for your 

boss. In this case, it is convenient to 

save the intermediate data into 

some history files, in order to be able 

to easily replicate the reports or to 

proceed with further data analysis 

later on. 

While KNIME Analytics Platform has 

some reporting capabilities - via 

integration with other reporting 

tools (BIRT, Tableau, Spotfire, 

QlikView, and more) or via the data 

app deployed via the KNIME 

Business Hub – we will focus here 

on some summarization features to prepare the data for reporting or for storage in some 

intermediate Data Warehousing tables or files. A number of KNIME nodes are available to help 

us in this data manipulation task.  

Before continuing, let’s create a new workflow group “Chapter5” and open a new workflow with 
the name “Projects”.  

5.2. Transform Rows 

Usually, data needs to reach the report in a predefined form. In this section we explore a few 

KNIME nodes that can help us to reach the desired data set structure.  

Figure 5.1. Data Structure of the Projects.txt file. 



Chapter 5: Preparing Data for Reporting 

178 

The data for the report comes from the file “Projects.txt”, which contains a list of projects and 
details how much money has been assigned to or used by each project during the years 2007, 

2008, and 2009. In the report, we want to show 3 tables, with a structure as the one shown in 

Table 5.1., and 2 charts, from a data table as the one reported in Table 5.2. 

The first table should show the project names in the row headers, the years in the column 

headers, and how much money has been assigned in total to each project for each year in the 

table cells.  

The second table has the same structure, but it shows how much money has been used in total 

by each project for each year in the table cells.  

The third table has the same structure as the two tables described above and shows the 

remaining amount of money (= money assigned - money used) for each project for each year. 

The first chart should show the total amount of money assigned to each project (y-axis) over 

the three years (x-axis). The chart is fed with a data set where the values for x-axis and the 

values for y-axis are listed in two different columns; that is a data set where the year and the 

corresponding sum of money belong to the same row. 

The second chart has the same structure as the first chart but shows the total amount of money 

used instead of the total amount of money assigned. That is, the chart must show the total 

amount of money used by each project (y-axis) over the three years (x-axis). For this reason, it 

needs a data set with year and total money used by each project separated into different 

columns.

Project Name/ 
Year 

2007 2008 2009 

Project 1 Sum 
(money) 
for 
project 1 
in year 
2007 

Sum 
(money) 
for 
project 1 
in year 
2008 

Sum 
(money) 
for 
project 1 
in year 
2009 

Project 2 Sum 
(money) 
for 
project 2 
in year 
2008 

… … 

Project 3 … … … 

Table 5.1. Data structure required for the tables in the 

report (Pivoting node). 

Project Name Year Sum (money) 

Project 1 2009 Sum (money) for 
project 1 in year 
2009 

Project 2 2009 Sum (money) for 
project 2 in year 
2009 

Project 3 2009 Sum (money) for 
project 3 in year 
2009  

... … … 

Table 5.2. Data structure required for the charts in the 

report (GroupBy node). 
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For both table and chart structures, we need to calculate the sum of money (assigned, used, or 

remaining), but we need to report it on a different data layout. For example, in one case we want 

the years to be the column headers and in the other case we want the years to be the column 

values.  

The first data table (Table 5.1) could be obtained with a “Pivoting” node, while the second data 
table (Table 5.2) with a “GroupBy” node. We then introduced a “GroupBy” node and two 
“Pivoting” nodes in the “Projects” workflow. 

In the “GroupBy” node, we calculated the sum (= aggregation method) of the values in the 
column “money assigned (1000)” and in the column “money used (1000)” (= multiple 
aggregation columns) for each group of rows defined by the combination of distinct values in 

the columns “reference year” and “name” (= Group Columns).  

In the resulting data table, the first two columns contained all combinations of distinct values 

in the “name” and “reference year” columns. The aggregations were then run over the groups 
of data rows defined by each (“name”, “reference year”) pair. The aggregated values are 

displayed in two new columns “Sum(money assigned (1000))” and “Sum(money used (1000))”.  

We named the new “GroupBy” node “money by project by year”. 

In one “Pivoting” node we calculated the sum (= aggregation method) of the values in column 
“money assigned(1000)” (= aggregation column) for each combination of values in the 
“reference year” (= pivot column) and “name” (= group column) columns.  

Figure 5.2. Output data table of the GroupBy node. 
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In the other “Pivoting” node we calculated again the sum (= aggregation method) of the values 
in column “money used(1000)” (= aggregation column) for each combination of values in the 
“reference year” (= pivot column) and “name” (= group column) columns. 

In both “Pivoting” nodes, we chose to keep the original names in the “Column naming” box. 

The aggregated values are then displayed in a pivot table with <year + aggregation variable> as 

column headers, the project names in the first column, and the sum of “money assigned(1000)” 
or “money used(1000)”  for each project and for each year as the cell content. We named the 

new Pivoting nodes “money assigned to project each year” and “money used by project each 
year”. 

In order to make the pivot table easier to read, we moved the values of the project name column 

to become the RowIDs of the data table and we renamed the pivot column headers with only 

the reference year value. In order to do that, we used a “RowID” node and a “Column Rename” 
node respectively. 

RowID 

The RowID node can be found in the “Node Repository” panel in the “Manipulation”  “Row”  

“Other” category. The RowID node allows the user to: 

 Replace the current RowIDs with the values of another column (top half of the 

configuration window) 

Figure 5.3. Output pivot table of the Pivoting node. 

Distinct values in 

group column “name” 

Distinct values in pivot 

column “reference year”+ 
aggregation variable name 

Sum(used money) 

for project Kara 

Kum in 2008 
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 Copy the current RowIDs into a new column (bottom half of the configuration window) 

When replacing the current RowIDs a few additional options are supported. 

 “Remove selected column” removes the column that has been used to replace the 
RowIDs. 

  “Ensure uniqueness” adds an extension “(1)” to duplicate RowIDs. Extension becomes 
“(2)” or “(3)” etc… depending on how many duplicate values are encountered for this 
RowID. 

 “Handle missing values” replaces missing values in RowIDs with default values. 

 “Enable hiliting” keeps a map between the old and the new RowIDs to keep hiliting working 
in other nodes. 

 In the “Node Repository” panel, close to the “Pivoting” node you can find the “Unpivoting” 
node. Although we are not going to use the “Unpivoting” node in our example workflow, it 
is worth it having a look at it. 

Figure 5.4. Configuration window for the RowID node. 
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Unpivoting 

The Unpivoting node rotates the content of the input data table. This kind of rotation is shown 

in Table 5.3 and Table 5.4. Basically, it produces a “GroupBy”-style output data table from the 

“pivoted” input data table. The “Unpivoting” node is located in the “Manipulation”  “Row”  

“Transform" category. 

In the settings you need to define:  

 Which columns should be used for the cells redistribution  

 Which columns should be retained from the original data set  

The unpivoting process produces 3 new columns in 

the data table:  

 One column called “RowIDs”, which contains 
the RowIDs of the input data table 

 One column called “ColumnNames”, which 
contains the column headers of the input data 

table 

 One column called “ColumnValues”, which 
reconnects the original cell values to their 

RowID and column header 

The column selection follows the already seen an 

“Exclude”/”Include” frame: 

 The still available columns for grouping are 

listed in the frame “Available column(s)”. The 
selected columns are listed in the frame “Group 
column(s)”. 

 To move from frame “Available column(s)” to 
frame “Group column(s)” and vice versa, use 
the “add” and “remove” buttons. To move all 
columns to one frame or the other use the “add 
all” and “remove all” buttons.  

 “Excludes and Includes” keeps the included/excluded columns as fixed and adds possible 
new columns to the other column set. 

Figure 5.5. Configuration window for the 

Unpivoting node. 

Columns to 

ungroup 

Original columns to 

retain in the new table 
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Input Table 

 Col1 Col2 Col3 

ID1 1 3 5 

ID2 2 4 6 

Table 5.3. Input Data Table. 

Unpivoted Data Table 

 RowIDs Column 
Names 

Column 
Values 

Row1 ID1 Col1 1 

Row2 ID1 Col2 3 

Row3 ID1 Col3 5 

Row4 ID2 Col1 2 

Row5 ID2 Col2 4 

Row6 ID2 Col3 6 

Table 5.4. Unpivoted Data Table. 

Note. Pivoting + Unpivoting = GroupBy 

The output data tables of the “GroupBy” node and of the “Pivoting” node are sorted by the group 
columns’ values.  

The “Sorter” node, like the “Pivoting” and the “GroupBy” node, is another node that is frequently 
used for reporting. For demonstrative purposes we briefly show here the “Sorter” node. 

Sorter 

The “Sorter” node sorts the rows of a data 
table by sorting the values of one of its 

columns. In the settings you need to select: 

 The column(s) to be sorted (the 

RowIDs column is also accepted)  

 Whether to sort in ascending or 

descending order 

It is possible to sort the table by multiple 

columns.  To add a new sorting column: 

 Click the “add sorting criterion” button 

 Select the new column 

Primary sorting column 

Figure 5.6. Configuration window of the Sorter node. 
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The first column (in the top part of the configuration window) gives the primary sorting; the 

second column gives the secondary sorting, and so on.  

5.3. Joining Columns 

After applying the two “Sorter” nodes, we now have two data tables with the same column 
structure:  

 RowID containing the project names 

  “2009” column with the used/assigned money for year 2009 

  “2008” column with the used/assigned money for year 2008 

  “2007” column with the used/assigned money for year 2007 

Now, it would be useful to 

 have all values for used and assigned money over the years together for each project in 

the same row, for example: 

RowID assigned 2009 assigned 2008 assigned 2007 used 2006 used 2005 used 2008 

<project 
name> 

… … … … … … 

 

 Calculate the remaining money for each year for each project, as: remain <year> = 

assigned <year> -used<year>  

Basically, we want to join the two data tables, the table with the values for the assigned money 

and the table with the values for the used money, into one single table. After that, we want to 

calculate the remaining money values. 

First of all, in order to be able to perform the table join without confusion, we need different 

columns to bear different names. We will see that actions need to be taken in case of a join of 

tables with columns with the same name. Let’s connect a “Column Renamer” node to each 
“RowID” node.  
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In the table resulting from the node “money used by project each year”, let’s rename the column 
called “2009 + money used(1000)” as just “used 2009”, the column called “2008 + money 
used(1000)” to “used 2008”, and the column called “2007 + money used(1000)” to “used 2007”.  

The data tables we want to join now have the structure reported below. 

Now that we have the right data structure, we need to perform a table join. We want to join the 

cells to be in the same row based on the project name, i.e. in this case this is the RowID. In fact, 

we want the row of used money for project “Blue” to be appended at the end of the 
corresponding row of the table with the assigned money. KNIME has a very powerful node that 

can be used to join tables, known as the “Joiner” node. 

Joiner 

The “Joiner” node is located in the “Node Repository” panel in “Manipulation”  “Column”  

“Split & Combine". The “Joiner” node takes two data tables on the input ports and matches a 
column of the table on the upper port (left table) with a column of the table on the bottom port 

(right table). These columns can also be the RowID columns. This node has three output ports: 

one for the matched rows, one for the unmatched rows from the top (left) table (if any), and 

one for the unmatched rows from the lower (right) table (if any). 

There are two tabs to be filled in, in the “Joiner” node’s configuration window. 

 The “Joiner Settings” tab contains all the settings pertaining to: 

o The join mode 

Figure 5.7. Money assigned to each project each year. Figure 5.8. Money used by each project each year. 
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o The columns to be matched 

o Other secondary parameters 

 The “Column Selection” tab contains all settings pertaining to: 

o Which columns from the two tables to be included in the joined table 

o How to handle duplicate columns (i.e., columns with the same name) 

o Whether to filter out the joining column from the left and/or from the right data table 

or none at all 

Joiner Node: The “Joiner Settings” Tab 

The “Joiner Settings” tab sets the basic joining properties, like the “join mode”, the “joining 
columns”, the “matching criterion”, and so on.  

The first setting is about the columns with values to match from the top (left) table and from 

the lower (right) table. Joining on multiple columns is supported. To add a new pair of joining 

columns: 

 Click the “+”button; 

Values in key columns can be matched by value and type, just as Strings (types can differ), or 

just as numbers. 
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The second setting is the join mode. 

 Matching rows is the equivalent of an Inner join, that is it keeps only those rows where the 

values in the two joining columns match; 

 Left unmatched rows in addition keeps all rows from the left (top) table, even if 

unmatched. Enabling the first and this checkbox is equivalent to a left join. 

 Right unmatched rows in addition keeps all rows from the right (bottom) table, even if 

unmatched. Enabling the first and this checkbox is equivalent to a right join. 

 Enabling all three checkboxes is equivalent to a full outer join. 

 

Figure 5.9. Configuration window for the Joiner node which includes two tabs to be 

filled: “Joiner Settings” and “Column Selection”. 
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Other settings: 

 Output options sets the table(s) to export at the output ports. 

 Row Keys sets the format for the new row keys. 

Joiner Node: The “Column Selection” Tab 

Tab “Column Selection” defines how to handle the columns that are not involved in the match 
process. Once that two key values match, the other columns from the left and the right table 

could be retained or removed. A classic “Exclude”/”Include” frame sets the columns to keep or 

remove from both input tables. 

 The columns to be kept in the new joined table are listed in frame “Include”. All other 
columns are listed in frame “Exclude”. 

Figure 5.10. Configuration window for the Joiner node: the "Joiner Settings" tab. 
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 To move from frame “Include” to frame “Exclude” and vice versa, use buttons “add” and 
“remove”. To move all columns to one frame or the other use buttons “add all” and 
“remove all”. 

The “Duplicate column names” panel offers a few options to deal with the problem of columns 
with the same header (= duplicate columns) in the two tables. 

 “Do not execute” produces an error  

 “Append suffix” appends a suffix, default or customized, to the name of the duplicate 
columns in the right table 

We joined the two tables (money assigned and money used) using the RowIDs as the joining 

column for both; we chose to append a suffix “(right)” for the columns from the right table with 
the same name as the columns from the left table; and we chose the inner join as join mode.  

Figure 5.11. Configuration window for the Joiner node: the "Column Selection" tab. 
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The resulting data is shown in figure 5.12. You can see that now the “assigned money” values 
and the “used money” values are on the same row for each project. 

It is of course possible to make the join on different columns than the RowIDs columns. 

However, the joining on RowID allows the user to keep the original RowID values which might 

be important for some subsequent data analysis or data manipulation. In this case we need 

the RowIDs to contain the joining keys. To manipulate the RowID values, KNIME has a “RowID” 
node. 

 

Figure 5.12. Join modes with the "Filter duplicates" option enabled. 



Chapter 5: Preparing Data for Reporting 

191 

5.4. Misc. Nodes 

In our report we want to include the remaining money for each year, calculated as:   <remaining 

value>  =  <assigned value>  - <used value>. There are two ways to calculate this value: the 

“Math Formula” node and the “Java Snippet” nodes. All of these nodes are located in the “Misc” 
category.  

The “Java Snippet” nodes allow the user to execute pieces of Java code. We can then use a 
“Java Snippet” node to calculate the amount <remaining value>. Actually, we will use three 
“Java Snippet” nodes: one to calculate the <remaining value 2009>, a second one to calculate 

the <remaining value 2008>, and a third one to calculate the <remaining value 2007>. We name 

the three “Java Snippet” nodes “remain 2009”, “remain 2008”, and “remain 2007”.  

There are two types of “Java Snippet” nodes: the “Java Snippet” node and the “Java Snippet 
(simple)” node. The functionality is the same: run a pice a Java code. However, the “Java 
Snippet” node has a more complex and more flexible GUI, while the “Java Snippet (simple)” 
node offers a more simplified GUI. That is, the “Java Snippet” node is for more expert users 
and more complex pieces of code, while the “Java Snippet (simple)” node is for medium expert 
users and more simple pieces of Java code. 

Java Snippet (simple) 

A “Java Snippet (simple)” node allows the execution of a piece of Java code and places the 
result value into a new or existing data column. The code has to end with the keyword “return” 

Figure 5.13. Output data table of the Joiner node with "Inner Join" as join mode. 
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followed by the name of a variable or expression. The “Java Snippet (simple)” node is in the 

“Node Repository” panel in the “Misc”  “Java Snippet” category. 

When opening the node’s dialog for configuration, a window appears including a number of 
panels:  

 The Java editor is the central part of the configuration window. This is where you write 

your code. Please remember that the code has to return some value and therefore it has 

to finish with the keyword “return” followed by a variable name or expression. Multiple 
“return” statements are not permitted in the code. 

 The list of column names is on the top left-hand side. The column names can be used as 

variables inside the Java code. After double-clicking the column name, the corresponding 

variable appears in the Java editor. Variables carry the type of their original column into 

the java code, i.e.: Double, Integer, String and Arrays. Array variables come from columns 

of the type Collection Type. 

 The name and type of the column to append or to replace. The column type can be 

“Integer”, “Double”, or “String”. If the column type does not match the type of the variable 
that is being returned, the Java snippet code will not compile. 

Figure 5.14. Configuration window for the Java Snippet node. 
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 It is also possible to return arrays instead of single variables (see the checkbox on the 

bottom right). In this case a number of columns (as many as the array length) will be 

appended to the output data table.  

 In the “Global Variable Declaration” panel global variables can be created, to be used 

recursively in the code across the table data rows. 

 The “Additional Libraries” tab allows the inclusion of non-standard Java Libraries.  

 In the “Global Variable Declaration” panel global variables can be created, to be used 
recursively in the code across the table data rows. 

For node “remain 2009” we used the Java code: return $assigned 2009$ - $used 
2009$ 

The same code could be used with the other two Java snippet nodes to calculate “remain 2008” 
and “remain 2009”. The same task could have been accomplished with a “Java Snippet” node. 

Java Snippet 

Like the “Java Snippet (simple)” node, the “Java Snippet” node allows the execution of a piece 
of Java code and places the result value into a new or existing data column. The node is located 

in the “Node Repository” panel in the “Misc”  “Java Snippet” category.  

The configuration window of the “Java Snippet” node also contains: 

 The Java editor. This is the central part of the configuration window and it is the main 

difference with the “Java Snippet (simple)” node. The editor has sections reserved for: 
variable declaration, imports, code, and cleaning operations at the end.  

o The “expression_start” section contains the code. 

o The “system variables” section contains the global variables, those whose value has 
to be carried on row by row. Variables declared inside the “expression_start” section 
will reset their value at each row processing. 

o The “system imports” section is for the library import declaration. 

Self-completion is also enabled, allowing for an easier search of methods and variables. 

One or more output variables can be exported in one or more new or existing output data 

columns. 
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 The table named “Input”. This table contains all the variables derived from the input data 

columns. Use the “Add” and “Remove” buttons to add input data columns to the list of 
variables to be used in the Java code. 

 The list of column names on the top left-hand side. The column names can be used as 

variables inside the Java code. After double-clicking the column name, the corresponding 

variable appears in the Java editor and in the list of input variables on the bottom. 

Variables carry the type of their original column into the java code, i.e.: Double, Integer, 

String and Arrays. Their type though can be changed (where possible) by changing the 

field “Java Type” in the table named “Input”. 

 The table named “Output”. This table contains the output data columns to be created as 

new or to be replaced by the new values. To add a new output data column, click the “Add” 
button. Use the “Add” and “Remove” button to add and remove output data columns. 
Enable the flag “Replace” if the data column is to override an existing column. The data 
column type can be “Integer”, “Double”, or “String”. If the column type does not match the 
type of the variable that is being returned, the Java snippet code will not compile. It is also 

possible to return arrays instead of single variables, just by enabling the flag “Array”. 
Remember to assign a value to the output variables in the Java code zone. 

Both “Java Snippet” nodes are very powerful nodes, since they allow the user to deploy the 
power of Java inside KNIME. However, most of the times, such powerful nodes are not 

necessary. All mathematical operations, for example, can be performed by the “Math Formula” 
node. The “Math Formula” node is optimized for mathematical operations and therefore tends 
to be faster than the “Java Snippet” nodes. 

Math Formula 

The “Math Formula” node enables mathematical formulas to be implemented and works 
similarly to the “String Manipulation” node (see section 3.5).  

The “Math Formula” node is not part of the basic standalone KNIME. It has to be downloaded 
with the extension package (see par. 1.5) “KNIME Math Expression Extension (JEP)”. Once the 
extension package has been installed, the Math Formula node is located in the “Node 
Repository” panel in the “Misc” category. 

In the configuration window there is: 

 The list of column names from the input data table 



Chapter 5: Preparing Data for Reporting 

195 

 The list of variables (to see in the “KNIME Advanced Luck”) 

 A list of mathematical functions, e.g.  log(x). 

 The expression editor 

Double-clicking data columns from the list on the left automatically inserts them in the 

expression editor. You can complete the math expression by typing in what’s missing.  Here, 
like in the “Java Snippet” nodes, $<column_name>$ indicates the usage of a data column. 

A number of functions to build a mathematical formula are available in the central list. At the 

bottom you can insert the name of the column to be appended or replaced. The node exports 

double type data, but integer type data can also be exported by enabling the “Convert to Int” 
option. 

In the configuration window of the Math Formula node introduced in the “Projects” workflow, 
we implemented the same calculation of values <remain 2009> mentioned in the “Java 
Snippet” node earlier in this chapter. We simply needed to: 

 Double-click the two columns $used 2009$ and $assigned 2009$ in the column list  

 Type a character “-“between the two data column names in the expression editor.  

Figure 5.15. Configuration window of the Math Formula node. 
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In the “Projects” workflow we decided to use this implementation of the remaining values with 
the “Math Formula” nodes. That is, we used 3 “Math Formula” nodes, one after the other, to 
calculate the remaining values for 2009, the remaining values for 2008, and the remaining 

values for 2007 respectively. We also kept the implementation with the Java Snippet nodes for 

demonstration purposes. However, only the sequence of “Math Formula” nodes has been 
connected to the next node. We gave the “Math Formula” nodes the same names that we used 

for the Java Snippet nodes, to indicate that they are performing exactly the same task. 

Another type of “Math Formula” node is the “Math Formula (Multi Column)” node. 

Math Formula (Multi Column) 

The “Math Formula (Multi Column)” node allows to implement the same mathematical formula 
on a list of columns, as specified in the configuration window. 

In the upper part of the configuration window, we choose the list of columns on which to 

implement the formula, through an Exclude/Include frame. After that, we have the same 

configuration as for the simpler “Math Formula” node. 

 The list of column names from the input data table 

 The list of variables (to see in the “KNIME Cookbook”) 

 A list of mathematical functions, e.g.  log(x) and their descriptions 

 The mathematics expression editor 
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Double-clicking data columns from the list on the left automatically inserts them in the 

expression editor. You can complete the math expression by typing in what’s missing.   

The last three options include: 

 A suffix to add to the original column names to form the output column names, if we want 

to create new columns; 

 The option of overwriting the values in the original columns 

 The flag to convert all results into Integer numbers 

Let’s finish the workflow with a “Constant Value Column” node to add an additional temporary 
column with the goal of this workflow “Preparing Data Workflow”. The Constant Value Column 
was then connected to the last Math Formula node. 

Figure 5.16. Configuration window of the Math Formula (Multi Column) node. 
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5.5. Cleaning Up the Final Workflow 

The “Projects” workflow is now finished. However, we can see that it is very crowded with 
nodes, especially if we want to keep all the “Java Snippet” nodes and the “Math Formula” nodes. 
To make the workflow more readable, we can group all nodes that belong to the same task in 

a “Meta-node”. For example, we can create meta-node “remaining money” that groups together 
all the nodes for the remaining values calculations.   

Note. A metanode is a (gray) node containing other nodes. 

There are two ways to build a metanode. The easiest way collapses pre-existing nodes into a 

metanode; the other way creates a metanode from scratch. 

Figure 5.17. Workflow "Projects". 
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Collapse Pre-existing Nodes into a Metanode 

 In the workflow editor, select the nodes that will be part of 

the meta-nodes (to select multiple nodes in Windows use the 

Shift and Ctrl keys) 

 Right-click any of the selected node 

 Select “Create Metanode…” 

 A new meta-node is created with the sub-workflow of 

selected nodes  

 The number of input and output ports is automatically 

defined based on the selected nodes.  

In workflow “Projects” we have selected all Java Snippet and Math 
Formula nodes to become part of a metanode named “Remaining 
Money” with one input port and one output port. The resulting workflow has been saved as 
“Projects_final”. 

Figure 5.19. Metanode. 

Figure 5.18. "Create a 

Metanode..." option in the 

context menu of the selected 

nodes. 



Chapter 5: Preparing Data for Reporting 

200 

Create a Metanode from Scratch 

A meta-node is a node that contains a sub-workflow of nodes. A meta-node does not perform 

a specific task; it is just a container of nodes.  

Create a “Meta-node”:  

 Select all the nodes you want to include it under the metanode 

 In the Tool Bar click the “Meta-node” icon 

Open a “Meta-node”: 

 Double-click the metanode, OR 

 Right-click the metanode and select “Metanode” > “Open metanode” 

A new editor window opens for you to edit the associated sub-workflow contained in the 

metanode. 

Fill a metanode with nodes: 

 Drag and drop nodes from the “Node Repository” panel as you would do with a normal 
workflow, OR 

 Cut nodes that already exist in your workflow and paste them into the sub-workflow editor 

window 

 

Note. The “Configure” option is enabled in a metanode but not really usable, as there is 
nothing to configure. All the other node commands, such as “Execute”, “Reset”, “Node name 
and description”, etc., are applied in the familiar manner, as for every other node. In 

particular, the “Execute” and “Reset” respectively run and reset all nodes inside the meta-

node. You can add an input or output type port to the metanode as per your requirement by 

clicking on + symbol 

Figure 5.20. Metanode icon in the tool bar. 



Chapter 5: Preparing Data for Reporting 

201 

Expand and Reconfigure a Metanode 

Once the metanode exists, it is possible to interact with it (reconfigure, expand, etc.) through 

its context menu. 

The context menu of a metanode is 

completely similar to the context menu 

of any other node, besides the 

“metanode” option. The metanode option 

opens a sub-menu with commands 

applicable only to a metanode, such as:  

 “Open metanode”, to open the 
metanode content in the workflow 

editor 

 “Expand metanode”, to reintroduce 
the meta-node content into the 

main workflow and get rid of the 

meta-node container 

 “Rename metanode”, to change the name of the meta-node  

You might have noticed the presence of items involving “Components” in the context menu. A 
component is a special kind of self-contained meta-node. Components are described in the 

sequel of this book, the “KNIME Advanced Luck”. 

Note. The main difference between meta-nodes and components involves the usage of 

composite views in a data app on the KNIME Business Hub, as inherited from the contained 

nodes. 

We created a new “Metanode” from all Math Formula and Java Snippet nodes and named it 
“Remaining Money”. We connected its input port to the output port of the “Joiner” node and its 
output port to the input port of the “Constant Value Column” node.  

Figure 5.21. Metanode context menu. 
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There are a number of pre-packaged meta-nodes in the KNIME “Node Repository” panel in 
some sub-categories “Meta Nodes” under some main categories, like “Workflow Control”, 
“Mining”, “R”, “Time Series”, and others. The “Meta Nodes” categories contain useful pre-

packaged meta-node implementations for the parent category.   

Figure 5.22. Workflow "Projects_final". 
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5.6. Next Step: Create a Report 

At this point the data is ready. We need to build the report. There are many options to do that, 

via KNIME native nodes as well as via integrations with external reporting tools. Here, we list a 

few possible options, though more options are surely possible. 

 Build dashboards via KNIME components and their composite views, to be visualized on 

a web browser when deployed on the KNIME Business Hub 

 Export data into the BIRT reporting solution, opensource and integrated within KNIME 

Analytics Platform 

 Export data into Tableau, PowerBI, or Spotfire reporting solutions via dedicated nodes. 

For such solutions a paid license is needed. Dedicated nodes exist to export the data into 

the solutions. While example workflows are provided under the Chapter7 folder, we will 

not describe the construction of such reports in detail in this book due to the requirement 

of a paid license. 

 Export data into a CSV file, or another compatible file, and import into your preferred 

reporting tool. 

5.7. Exercises 

Exercise 1 

Use the input data adult.data to do the following: 

 Calculate the total number of people with income > 50K and the total number of people 

with income <= 50K for each work class 

 Sort rows on the “work class” column in alphabetical order 

 Create a data table structured as follows: 

Work Class Nr. of people with income >50K Nr. of people with income < 50K 

Work Class 1   

…   

Work Class n   
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 Mark this dataset for reporting 

Solution to Exercise 1 

1. Read the data. 

2. Use a “Pivoting” node to build the data table in the requested format. The “workclass” 
column should be the group column and the “Income” column should be the pivot column. 

3. Optionally rename the column headers to make the table easier to read. 

Exercise 2 

Extend Exercise 1: 

 Calculate the total number of people with income > 50K and with income <= 50K 

 Calculate the total number of people for each work class 

 Calculate the total number of people 

 Extend the data table produced for exercise 1 as follows: 

Work Class Nr. of people with income >50K Nr. of people with income < 50K Nr. of people 

Work Class 1    

Figure 5.23. Exercise 1: The workflow. 
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…    

Total Sum(Nr. of people with income 
>50K) 

Sum(Nr. of people with income 
<50K) 

Sum(Nr. of people) 

Solution to Exercise 2 

1. To calculate the number of people for each “workclass” and each income class, we use 
the “Pivoting” node built in Exercise 1. The “Pivoting” node has three outputs: the pivot 
table, the totals by row, and the totals by column. Remember to enable “Append overall 
totals” in the “Pivots” tab. 

2. We then inner join on the “workclass” values the pivot table with the totals by row using a 
“Joiner” node. 

3. We then concatenate the data table resulting from the “Joiner” node with the totals by 
column of the “Pivoting” node. 

Exercise 3 

Read the csv file SoccerWorldCup2006.txt from the KBLdata folder. This file describes the 

results of soccer games during the soccer world cup 2006 (www.fifa.com).  The second 

semifinal game for the third and the fourth placement is not reported.  

For each team calculate: 

Figure 5.24. Exercise 2: The workflow. 
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 The total number of played games 

 The total number of scored goals  

 The total number of taken goals  

 The average number of scored goal per game  

 The average number of taken goal per game  

 A fit measure as:  (total number of scored goals – total number of taken goals)/number 

of played games 

Document each step with the appropriate node’s name and description. Make the workflow 
readable by using metanodes. 

Solution to Exercise 3 

In the “# scored goals” meta-node, first we sum team 1’s scores over all team 1, then the sum 
of team 2’s score over all team 2’s, and finally we sum the total scores of team 1 and team 2 
when team 1 = team 2. 

Meta-node “# taken goals” has the same structure as Meta-node “# scored goals”. The only 
difference lies in the aggregation variable of the first two “GroupBy nodes. In the meta-node “# 
scored goals” the first “GroupBy” node sums the “score of team 1” for all “team 1” values and 

Figure 5.25. Exercise 3: The workflow. 
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the second “GroupBy” node sums the “score of team 2” for all “team 2” values. In meta-node 

“# taken goals” the first “GroupBy “node sums the “score of team 2” for all “team 1” values and 
the second “GroupBy” node sums the “score of team 1” for all “team 2” values.  

In the “KPI calculation” meta-node we used 2 “Math Formula” nodes and one “Java Snippet” 
node. It could have been any other combination of “Java Snippet” and “Math Formula” nodes. 

 

 

 

 

 

 

 

Figure 5.26. Metanode "Score Goals” and “Received Goals” respectively. 

Figure 5.27. Metanode "KPI Calculation". 
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Chapter 6: Dashboards with Composite 

View 

6.1. The Dashboard 

From the data tables produced in the previous chapter, we build here a simple dashboard, 

including a table for assigned money, a table for used money, and a table for remaining money 

across all projects across the three years of observation and the corresponding three bar 

charts. 

The dashboard of course must also be interactive, that is it must offer as many customization 

options as possible to the end user while displaying it on a web browser. Customization options 

must include: 

 Changing titles, subtitles, and other labels for each table and bar chart 

Figure 6.1. The final dashboard visualizing the tables and bar charts for assigned, used, and remaining money across 

all 11 projects and the three years of observation. 



Chapter 6: Dashboards with Composite View 

209 

 Selecting a project and visualizing all data pertaining to that project across all tables and 

charts 

 Table pagination, if needed 

 Zoom in/zoom out of single dashboard items 

6.2. The Nodes 

In chapter 3, dedicated to data visualization, we have seen already the Table View node and the 

Bar Chart node. As the name says, the Table View node produces a table-based visualization, 

and the Bar Chart node produces a bar chart visualization of the input data. As discussed 

above, all such visualization nodes have a few tabs in their configuration window: three the 

Table Viewer node and four the Bar Chart node. 

Tabs in Table View’s configuration window 

 Options. This tab sets the input columns to display in the table together with some other 

minor settings, like the title and subtitle, and the display of colors, keys, and headers. We 

decided to include the project names in column “Project” as first column from the left in 

the table. 

 Interactivity. This tab includes checkboxes for the interactivity options to be enabled, 

such as pagination options, selection options for the data rows, as well as searching and 

sorting options for tables with a very high number of rows. We have 11 projects, and we 

would like to be able to see all of them at once. So, here we set Initial Page Size 11. 

 Formatters. This tab defines how to represent dates, numbers, and missing values in the 

table cells. 

Tabs in Bar Chart’s configuration window 

 Options. Again, this tab sets the input columns to be involved in the visualization, as just 

an occurrence count, a sum, or an average. Since our numbers are unique and are 

supposed to be displayed as they are, we can choose the option Average or Sum. Category 

column is “Project” containing the project names. Optionally, the category names could 
be sorted alphabetically. However, our data rows are already sorted by project name in 
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alphabetical order. The checkbox “Generate image” enables the creation of the chart as 
an image at the output port. While useful for some tasks, this can be time and resource 

consuming. 

 General Plot Options. This tab includes all plot settings: title, subtitle, axis labels, item 

display, and size of the optionally created image. 

 Control Options. This tab includes checkboxes for the plot customization, such as editing 

of title, subtitle, and axis label, switching bar orientation and bar grouping vs. stacking, 

and other view settings. 

 Interactivity. This tab completes the list of checkboxes for interactivity, covering the 

options for selecting bars in the chart.  

The last node missing to complete this simple dashboard is a title. For that we use the “Text 
Output Widget” node. 

The Output Widget 

This node just outputs text in a graphical view.  

 “Text” contains the text to be output.  

 “Text format” contains the type of text and how to interpret it. Three types of text format 
are possible: simple text, preformatted text, and HTML text. 

HTML text interprets and visualizes HTML instructions. So, the line:  

<h1>Project Report: Money Flow</h1> 

Is visualized as: 

This node has an optional Flow Variable input port. Flow Variables though are not described in 

this book, and we do not need them for this particular example. 

In conclusion, to build the dashboard displayed above, we need: 

Figure 6.2. The output of the Text Output Widget 

node. 
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 Three Table View nodes 

 Three Bar Chart nodes 

 One Text Output Widget node 

The workflow developed in the previous chapter, named Projects, has been imported in folder 

Chapter6 and renamed “Dashboard”. Then the seven required nodes have been created. Notice 
that we added a RowID node to copy the project names from the RowIDs into a data column 

named “Project”, and that we added a Column Resorter node to place the “Project” column at 
the very left of the input data table. Notice also that the Text Output Widget node does not need 

any input and therefore was left floating freely around.  

Now, let’s assemble all these nodes together into a component to create the dashboard. 

6.3. The Component 

Remember the metanode described in chapter 5? Components represent the natural evolution 

of metanodes. Components are like metanodes in the sense that they collect nodes inside. Like 

metanodes, to create a component: 

Figure 6.3. Configuration window for the Text Output Widget node. 
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 select all nodes of interest by clicking and drawing a rectangle around them or by shift-

clicking/ctrl-clicking each one of them 

 right-click and select “Create Component…” 

 give it a name 

and your new component is created. We named it “Dashboard”. 

Like metanodes, if you right-click the component and then select “Component”, you can open 
the component submenu. Here you can find the following options: 

 “Open” to open and inspect the content of the component 

  “Expand” to remove the component and reinstate the nodes back into the original 
workflow 

Figure 6.4. New workflow with component "Dashboard" at the end of the data flow for visualization. 
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 “Setup” to change some of the component settings, like for example the name or the input 
and output ports in number and type. “Setup” is equivalent to the option “Reconfigure…” 
for metanodes. 

 “Convert to Metanode” to fall back on the familiar structure of a metanode 

 “Share” to create a template on a local or a remote workspace that can be later reused to 
create linked instances of this same component. 

So far, a component looks very similar to a metanode. What can a component do that a 

metanode cannot? 

 A component is an encapsulated 

environment. We have not talked 

about Flow Variables yet. However, we 

can describe a component as a 

vacuum environment that only lets 

data in and out and nothing else.  

 A component can have a 

configuration window. Components 

can have a configuration window, 

metanodes cannot. Inserting one or 

more nodes from the folder “Workflow 
Abstraction/Configuration” provides 
one or more items for the 

configuration window of the 

component. A component is a way to 

create a new node without coding! All of the node templates in 

“EXAMPLES/00_Components” in the KNIME Explorer panel (or here on the KNIME 
Community Hub) are actually components that have a configuration window. 

 A component can be given a view. Components can get a view, metanodes cannot. 

Inserting one or more nodes from the folder “Workflow Abstraction/Widgets” provides 
one or more items for your component view. The interactive views of these nodes are 

passed into the interactive view of the component. Views with many items from many 

corresponding widget nodes are called composite views. In addition, Widget node views 

inside the same composite view subscribe to the selection and visualization of the same 

data. This means that what is selected in the view of a plot, for example, is also selected 

Figure 6.5. Context menu of a component. 
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(and can be visualized exclusively) in the view of another plot within the view of the same 

component. This is the part of components we are interested in. 

All blue nodes within the “Dashboard” component produce a graphical view. Thus, the new 
component “Dashboard” has a view composed of three tables, three bar charts, and a text to 
work as title. This is the composite view of the component. 

6.4. Adding Colors 

What we have built so far is still in black and white. This last part is dedicated on how to 

introduce colors in KNIME plots and charts. We will use colors to identify projects in the tables 

and to identify years in the bar charts. 

To assign a color property to each project we just pass the original data through the Color 

Manager node. This automatically assigns a color to each data row. Colors can also be 

manually customized within the node configuration window. The data rows with colors reach 

the Table View node and get represented each with its own color on the left. 

To assign a color to each year we need to make the column headers (“assigned 2009, “used 
2009”, …) pass through the Color Manager node as data rows. To do that, we use the “Extract 
Table Specs” node. This node extracts the column properties – column headers, maximum and 

minimum values, etc. - and puts such information, including the column header names, on data 

rows. This table can be used to assign colors to the yearly columns through the Color Manager 

Figure 6.6. Table with assigned colors by project name. 



Chapter 6: Dashboards with Composite View 

215 

node. Here, we became a bit more graphically creative, and we assigned dark green to all 2009 

columns, mid green to all 2008 columns, and light green to all 2007 columns. This map is then 

sent to the second input port of the Bar Chart node to color the bars in the chart. Indeed, the 

second input port of the Bar Chart node, and of many other visualization nodes, requires a map 

(<column header>, <column color>) to transfer into the chart. 

The final content of the component “Dashboard” is reported in Figure 6.1. Notice the two Color 

Manager nodes, one for the project names in the tables and one for the yearly amounts in the 

bar charts. Also notice the free-floating Text Output Widget node. 

 

 

 

 

 

 

 

 

Figure 6.7. Shades of green assigned to the yearly columns in 

the Color Manager node. 
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6.5. The Composite View 

Let’s inspect now the composite interactive view of the final component. 

To open the interactive view of a component, right-click the component and select “Interactive 
View: <name of component>”. If you open the interactive view of the component “Dashboard” 
now, you will see just a long list of tables and bar charts with no organized layout. A good layout 

could be: 

 A title 

 A row with the three tables 

 A row with the three bar charts 

Figure 6.8. Content of component "Dashboard". 
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The layout of a composite view is decided via the Layout 

button in the toolbar at the top of the KNIME workbench or if 

you right-click on the component -> component -> layout 

editor is the other way open the layout editor. After opening 

the content of the component, click the layout button to 

arrange the view items in the composite view. The layout 

editor opens. 

In the layout editor you will see on the left all view items 

pertaining to the visualization nodes within the component 

and a set of possible row grids. All these items can be moved 

into the final view by drag&drop. We would like to have: 

 a full row dedicated to the title, that is the view produced 

by the Text Output Widget node 

 a row with three cells for the three tables 

 a row with three cells for the three bar charts 

We drag&drop the row with one cell only at the top; then the row with three cells; then again, 

the row with three cells. Then, we drag&drop the “Text Output Widget” item into the first row, 
the “Table View” of node “Table of Assigned Money” in the first cell of the second row, and so 

on till all cells are populated as desired.  

Notice the trash basket, the plus sign, and the setting wheel in the top right corner of each cell 

and row, respectively to add one more cell/row, remove the current cell/row, and customize 

them. 

The view now with the new layout should resemble the dashboard shown in Fig. 6.1, with one 

important addition: interactivity. Let’s have a look at the interactivity options derived from the 
“Interactivity” settings in the configuration windows. 

To open the composite view of a component, again, right-click the component and select 

“Interactive view: <name of component>”. The view opens and it contains the single views from 
each one of the visualization nodes within the component. 

 

Figure 6.9. How to open the 

composite view of a component. 

Figure 6.10. The layout button in the tool bar in the KNIME Workbench. 
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Customize each item in the composite view  

If we focus on the single view item in the composite view, we notice three buttons in the top 

right corner. 

From the right, the first button allows you to change all settings in the plot/table/chart, like titles 

and labels, visualization mode, etc. … In some plots it even allows you to change the columns 
reported on the x and y axis. 

The second button is to zoom the current chart into full screen. 

Figure 6.11. The Layout Editor. 
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The third button clears all previous settings. 

Selecting and visualizing data rows 

Many plots and charts offer tooltips when hovering over the chart/plot area. In the case of the 

bar chart, hovering over the bars provides a tooltip with the exact number represented by the 

bar. 

Figure 6.12. One of the bar charts in the composite view of component "Dashboard". 
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Also, bars/points/rows in a chart/plot/table can be selected and the same selection appears 

in all other view items if subscription and publishing was enabled in their configuration settings. 

For example, I have selected project Kalahari and Kara Kum in the central table. The same 

selection automatically appears in all other tables as well as in all bar charts. In addition, many 

simple views, like the table view in this composite view, offer the option of visualizing only the 

selected rows in the settings menu from the top right button. 

6.6. Executed as a Data App on the KNIME Business Hub 

This workflow, like all other workflows, can then be executed on the KNIME Business Hub for 

production. There, composite views of components become a data app on the KNIME Business 

Hub.  

After logging in into a KNIME Business Hub from a web browser and after starting the execution 

of the workflow, the composite view of the first component in the workflow appears on the web 

browser in the shape of a web page; after interacting with page if needed and pressing “Next”, 
the composite view of the next component in the workflow appears, and so on. 

In our case, our workflow (Fig. 6.3) has just one component with a composite view. That is, 

starting the workflow on the KNIME Business Hub will land us onto the one and only web page 

Figure 6.13. Selection of points across all view items. 
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generated by the composite view of the component “Dashboard”. Here we can interact with all 
items of the view exactly as we did with the local view of the composite view. 

Notice that more complex Widget and data visualization nodes could be introduced into the 

component for an even more interactive experience. Since this book is only about introducing 

the reader to the basic features of KNIME Analytics Platform, we will stop here. However, keep 

in mind that more advanced features - like slide bars for filtering, refresh buttons, and more - 

could be also implemented within the component. 

6.7. Exercises 

The exercises for this chapter follow on from the exercises in Chapter 5. In particular, they 

require shaping a report layout for the data sets built in Chapter 5 exercises. 

Exercise 1 

Using the workflow built in Chapter 5\Exercise 1, build a report with: 

 A title “income by work class” 

 A table on the left side like: 

Work Class Income <= 50K Income > 50K 

[workclass] [no <= 50K] [no > 50K] 

With colors assigned to each workclass. 

 A bar chart on the right with: 

o Work class on the x-axis 

o “Income <= 50K” and “Income > 50K” on the y-axis 

o Legend available 

o No title 

o No axis titles 

o Color blue for bars <=50K and color green for bars >50K 

 Select “Local-gov” in both the table and the bar chart 
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Solution to Exercise 1 

We built the component “Dashboard2” with  

 A Table View node 

 A Bar Chart node 

 A Text Output Widget node 

Figure 6.14. Component "Dashboard2" to implement required composite view. 

Figure 6.15. The final composite view with class "Local-gov " selected in both the table and the bar chart. 
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Chapter 7: Reporting in KNIME 

7.1. KNIME Reporting (Labs) 

KNIME Analytics Platform already includes powerful visualization features. The KNIME 

Views extension, for example, provides several types of interactive charts which can be 

assembled into composite views as dashboards or Data Apps. 

BIRT (Business Intelligence Reporting Tool) is already integrated into KNIME for static reports 

and is described in detail in section 7.2. Although BIRT is a great reporting tool, it can be difficult 

to master due to its complexity. With the release of the KNIME Modern UI, which simultaneously 

has simplicity, functionality and beauty, could we also have a new easy-to-use reporting 

Figure 7.1. The Node usage and layout window 
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feature? Such a feature could have a proper harmony with other existing KNIME capabilities 

and make the generation of hard-to-create static reports a piece of cake.  

Well, the feature we just described is here! The recent 

release of 5.1 and 5.2 includes a new KNIME Reporting 

extension that allows you to take the composite 

visualizations you build and render them into static PDF 

reports quickly and easily. The best part of this new 

feature is you don’t need to learn anything new; all you 
need is what you are already familiar with, plus enabling report output in the layout settings of 

a component with a view. Then, you will have a new report output port, which can be connected 

to the Report PDF Writer node to generate a PDF file. 

Let’s look at a use case regarding the CO2 Emissions report, focusing on the highest producers 
of CO2 emissions in 2020. We are going to illustrate this use case with the help of the new  

KNIME Reporting extension. We will use the open-source data from the World in Data project. 

This data encompasses information on countries, years, CO2 emissions, and emission 

sources. 

Inside the data pre-processing metanode, we will read and clean up the CO2 data. We limit our 

data to the period from 2000 to 2020 and select only the countries with the highest emissions 

in 2020 (China, the United States, and India). 

Since we would like to create a report where each page represents the statistics for one country, 

we use the Group Loop Start node to iterate over countries. 

Figure 7.2. The Report PDF Writer node. 

Figure 7.3. Workflow generating CO2 emissions report using the KNIME Reporting extension. 
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After the data preprocessing is done, we are ready to continue with the next step: building the 

report. In our report, we will display a few visualizations, a table view, and text views. Let’s look 
inside our component to see how it’s done. 

With the release of 5.1, the new HTML column type was introduced, enabling us to apply styling 

to our text and render it as HTML. Inside the “Add growth” metanode, we use the Column 

Expressions node to change the text color of CO2 values. If the growth rate of CO2 emissions 

is positive (“+”), then the value will be red. If the growth rate is negative (“-”), then the CO2 
emissions in the country are decreasing; thus, these values are displayed as green. Another 

Figure 7.5. Visualization nodes inside the “Report” component. 

Figure 7.4. Data Pre-processing steps inside the metanode. 
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interesting feature released with version 5.1 is the Text View (Labs) node. Using this node, we 

add the country's name as the title and the footnote at the bottom of each page.  

After finishing all our tables and views, we wrap our visualizations and table inside the 

component and "Enable Report Output" in the Layout Editor. If we preview the component's 

output, we will see the first page of our generated report. 

To close the loop, we will use the Model Loop End node. This node converts the model into 

data cells and collects the results into a data table. To concatenate all pages that we have 

generated, we use the Report Concatenate (Table) node. 

The last step of the workflow is to export the pdf report. To do so, we use the Report PDF Writer 

node to specify the file's output location (path and file name). 

And that’s it! with the new KNIME Reporting extension, it’s very easy to generate static PDF 
reports in KNIME. You can download the extension and give it a try to see how it works. 

How to build the report designer 

Now that you are familiar with how to generate a PDF/HTML report out of your composite views 

in KNIME, we are going to see how to build an online report designer. The purpose of this report 

is to provide accessibility to the entire team via a browser-based data app. It will enable any of 

the team members to design and generate their own custom reports without needing to be 

familiar with the underlying process. 

Figure 7.6. Preprocessed data to be sent for report generation. 



Chapter 7: Reporting in KNIME 

227 

At its core, the data app generates a customized report and sends it via email. Our example 

demonstrates a case where we have three individuals involved in the process: The Manager, 

who receives the report, a Data Analyst, who can customize and generate the report, and a Data 

Scientist, who builds the data app with KNIME. 

The data app will enable users to: 

 Select the main countries to be included in the report 

 Select other countries for comparison with the main countries 

 Select the sources of CO2 emissions to be included in  report 

 Select between multiple report designs 

 Switch between different charts 

 Select to show or hide a chart 

 Configure the charts in the report 

 See a quick preview of the report without the need to switch windows 

 Send the report via email 

Figure 7.7. DataApp showing different selection options. 
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Taking our workflow example that we built in the previous section as the starting point, let’s 

now modify the preprocessing metanode by including the “World” value (in the countries) and 
passing the top 15 countries to the next node in the flow (instead of just 3). This will give the 

Data Analyst more options to choose from in the app. 

Also, using the GroupBy node, we create a set of countries to provide the 

Data Analyst with country selection options. Later, this set will be passed 

to the Multiple Selection Widget nodes (inside the Report Designer 

component) as a flow variable. 

Let’s open the “Report Designer” component and check inside. 

In this part of the component, we have nodes to let the Analyst choose 

which kind of charts he wants to include in the report: widgets to switch 

between pie chart and a bar chart to visualize CO2 emissions, an option 

to display or hide the bar chart that shows the sources of emissions, and 

the ability to choose between a stacked or grouped bar chart.  

The first Single Selection Widget node lets the Analyst choose from two 

different report layouts. In the “Report layouts” section, you can see the 
two components with the report output ports.  

Each component produces a different layout. The Summary Report 

component generates 1 page for each main country, while the Full Report 

component creates a report with 2 pages for each selected country. The 

Summary Report layout is a simplified report: it includes fewer charts, and 

Figure 7.8. Preprocessed data to be sent for report generation. 

Figure 7.9. Components 

to select different 

layout options. 
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displays the Table View in half-width. By using components, the Analyst can add as many 

layouts as she needs in a single workflow without having to build a new workflow for each 

layout. 

In the “Report generation” section, the PDF file is written in the data area of the workflow so we 
can access it by the File Download Widget and Send Email nodes. 

Finally, a Multiple Selection Widget is used to get the Email address(es), and the Send Email 

node is used to send the report. 

7.2. Reporting with BIRT 

KNIME analytics Platform also offers an integration with the open-source version of the BIRT 

(Business Intelligence and Reporting Tool) BI tool. The BIRT integration is contained in a KNIME 

Figure 7.10. Section of the workflow that generates report. 

Figure 7.11. Section of the workflow that gathers email addresses and sends the report using the “send email” node. 
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extension named “Report Designer”. This extension installs the interface between KNIME 
Analytics Platform and BIRT as well as the open-source version of BIRT. Thus, you do not need 

to have a pre-installed version of BIRT working on your machine to use the extension, as it is 

the case for the other BI tools. You also do not need to buy a license, which makes the 

integration between BIRT and KNIME Analytics Platform much easier to handle. Because of all 

of that, in this chapter we will focus on how to build a report using the Report Designer 

Extension (BIRT integration). In this chapter we will use the BIRT integration to build a similar 

report to the dashboard built in the previous chapter. 

Figure 7.12. The "Reporting_w_BIRT" workflow. 
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In folder Chapter 7 of the downloaded material, you can find a number of workflows – 

originating from the workflow “Projects_final” in the previous chapter – to export the data to 

different BI tools. In particular, workflow #1 and #2 also produce a similar dashboard for BIRT 

and the data app deployed on the KNIME Business Hub respectively. All these workflows work 

on the “Projects.txt” file available in the book’s data folder “KBLData”. The “Projects.txt” file 

contains a list of project names with the corresponding amount of money assigned and used 

for each quarter of each year between 2007 and 2009. All workflows build a pivot table with the 

project names and the sum of the money assigned, the sum of the money used, and the sum 

of the money remaining (= assigned - used) for each project and for each year between 2007 

and2009. The resulting data fills a few tables and two bar charts in the associated report. 

Installing the Report Designer Extension (BIRT) 

The “KNIME Report Designer” suite is not included in the basic 
standalone version of KNIME Analytics Platform. It can be 

downloaded as a separate extension package from the 

“KNIME & Extensions” link in “File”  “Install KNIME 
Extensions”. 

To install the “KNIME Report Designer” package:  

 Start KNIME Analytics Platform 

 In the Top Menu click “File”  “Install KNIME 
Extensions…” 

 In the “Available Software” window, expand “KNIME & 
Extensions” and scroll down to “KNIME Report 

Figure 7.13. The data table from the "money table" node of the "Reporting_w_BIRT" workflow. 

Figure 7.14. The Reporting category in 

the Node Repository. 
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Designer”. Alternatively, search for “KNIME Report Designer” in the search box at the top. 

 Select extension “KNIME Report Designer”  

 Click the button “Next” on the bottom and follow the installation instructions 

If the installation runs correctly, after KNIME Analytics Platform has been restarted, you should 

have a new category “Reporting” in the “Node Repository” panel with two nodes: “Data To 
Report” and “Image To Report”. 

Marking Data in the Workflow 

The KNIME reporting tool is a different application (BIRT) from KNIME Analytics Platform. The 

idea is that the KNIME workflow prepares the data for the KNIME Report Designer, while the 

KNIME Report Designer displays this data in a graphical layout.  

The two applications, the workflow editor and the reporting tool, need to communicate with 

each other; in particular, the workflow needs to pass the data to the reporting tool. This data 

communication between workflow and reporting tool happens via the “Data to Report” node. 

Data to Report 

The “Data to Report” node can be found in the 
“Node Repository” panel in the “Reporting” 
category. The “Data to Report” node marks 
the KNIME data table at the input port as a 

data set for the KNIME Report Designer.  

When switching from the workflow editor to 

the reporting tool, all data tables marked by 

a “Data to Report” node are automatically 
imported as data sets in the reporting tool. 

Each data set carries the name as the text 

below the originating “Data to Report” node. 
Therefore, the text under the “Data to Report” 
node is important! It has to be a meaningful text to facilitate the identification of the data set 

in the report environment. 

Figure 7.15. Configuration window of the Data to Report 

node. 
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Since the “Data to Report” node is only a marker for a data table, it does not need much 
configuration. The configuration window contains just a flag “use custom image scaling” to 
scale images in the data to a custom size. The default image size is the renderer size. 

We used two “Data to Report” nodes in our workflow. One is connected to the sequence of 
“Math Formula” nodes – in the metanode named “Remaining Money” - and exports the data for 

the tables in the report. The second one is connected to the “GroupBy” node texted as “money 
by project by year” and exports the data for the charts in the report.  We added a text “money 
table” under the first Data to Report node and a text “money chart” under the second Data to 
Report node. Thus, when switching to the reporting tool, we will find there two data sets called 

“money table” and “money chart” respectively. We will know immediately which data to use for 
the tables and which data for the charts. 

In the category “Reporting” there is also the “Image to Report” node. The “Image to Report” 
node works similarly to the “Data to Report” node, it only applies specifically to images. 

From KNIME to BIRT and Back 

In KNIME Analytics Platform we develop workflows for data manipulation and modeling. In 

BIRT we create and shape the report to represent the workflows’ data. Only one report is 
associated to one workflow and vice versa. It is not possible to associate more than one report 

to one workflow. When we move into the BIRT environment, we open the report associated with 

the active workflow. From a KNIME workflow open in the KNIME workbench, you can switch to 

the BIRT environment and open the associated report by: 

 Opening the workflow from the “KNIME Explorer” panel into the workflow editor 

 Clicking the “Report” icon in the tool bar.  

The BIRT report editor then opens the report 

associated with the selected workflow. The 

report editor creates a new tab in the KNIME 

Workflow Editor window. 
Figure 7.16. The report icon in the tool bar. 

Figure 7.17. The new tab in the KNIME Workflow Editor for the selected report. 
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To go back from the report to the workflow editor, you can either select the workflow tab or 

click the KNIME icon in the tool bar. This will take you back to the more familiar KNIME 

environment. 

If it is the first time you open the report associated with the workflow, it will be empty.  

Note. If the workflow has no Data to Report node, the “Report” icon is not present in the tool 
bar. 

Double-click the “Reporting_w_BIRT” workflow in the “KNIME Explorer” panel to open it; then 
select the report icon in the tool bar. This takes you to the BIRT environment, to the associated 

report. 

The BIRT Environment 

BIRT is developed as an Eclipse Plug-In, as KNIME Analytics Platform is. This means that they 

both inherit a few properties and tools from the Eclipse platform. As a consequence, the BIRT 

KNIME Workflows 

Dataset View 

Report Items 

Report Editor 

Layout/Master Page 

Figure 7.18. The Report Editor in the BIRT environment. 
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report editor and the KNIME workflow editor are very similar, which makes our learning process 

easier for the reporting tool. In this section we provide a quick overview of the BIRT report 

editor. For more information on the BIRT software, the book listed in9 gives a detailed overview 

of BIRT potentials. Let’s have a look at the different windows in the BIRT environment with an 
empty report. 

The “KNIME Explorer” panel is still in the top left corner, and it still contains the list of available 

KNIME workflows.  

Under the “KNIME Explorer” panel, we find the “Data Set View” panel. This panel contains all 
data sets that are available for the report.  

Under the “Data Set View” panel, we find the list of all available “Report Items” to create our 
report, like Table, Label, Chart, and so on. 

In the center, as for the KNIME workflow editor, we find the report editor. Like in KNIME, where 

we built workflows by “dragging and dropping” the nodes into the workflow editor, here we can 
compose the report by “dragging and dropping” the report items into the report editor.  

Finally, in the center bottom of the window there are a few tabs, of which only two are 

interesting for our work: Layout and Master Page. 

Layout is the page editor, where the single report page is processed. 

Master Page, as in PowerPoint Master Page, defines a template for every page of the report. 

This is where the page header and footer are designed. 

Master Page 

Right below the report editor, there are a few tabs: “Layout”, “Master Page”, and others. Let’s 
select tab “Master Page”.  

Now the report editor in the center has become the Master Page editor and, below the tabs, you 

can see the Master Page’s Properties Editor. There are 6 property groups: “General”, “Border”, 
“Margin”, “Header/Footer”, “Comments”, and “Advanced”.   

We would like to prepare a report to be exported into slides in PowerPoint format. We also want 

to have a running title with a logo on all the slides.  

 
9 D. Peh, N. Hague, J. Tatchell, “BIRT. A field Guide to Reporting”, Addison-Wesley, 2008 
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Usually, PowerPoint slides have a landscape orientation. To change the paper orientation, we 

go to the “Orientation” field under the property “General”. We change it to “Landscape”. 

Header/Footer” offers only check boxes about showing or not showing the header and the 
footer. In order to actually change the header and the footer, we need to work in the Master 

Page editor itself. In the top part of the Master Page editor there is a dashed rectangle. This is 

the header editor.  

To insert a logo in the header of each slide go to the Master Page editor:    

 Right-click the header editor  

 Select “Insert” 

 Select “Image” 

 In the “Edit Image Item” window upload your image, for example as an embedded file 

The logo image will appear in the top left corner of the header editor.  

Master Page Editor 

Property Editor 

Header Editor 

Figure 7.19 The Header Editor inside the Master Page Editor. 
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Instead of an image you can insert a “Label” in the 
header editor to have a running title in your slides. 

You can also combine both, a running title and a logo, 

in the header editor. However, you can only combine 

more report items side by side by using the “Grid” 
report item.  

To see how the report will look like, you need to 

select “Run”  “View Report” in the top menu and then 
your output format. This generates the real report. 

For a quick preview you can choose “In Web Viewer” 
for a quick creation of the HTML report page. For the 

moment it is just the logo we have introduced in the 

top left corner and the footer with the KNIME logo. 

The Data Sets 

The panel named “Data set view” contains the data available for the report. Each report is linked 
to one and only one workflow. In the integration of BIRT inside KNIME, data sets are 

automatically imported from the data tables marked by a “Data to Report” node in the 

underlying workflow. In the integrated version, there is no other way to generate data sets in 

the reporting environment. 

Let’s have a look at the data sets available for the report of workflow “Reporting_w_BIRT”. 

In the “Data Set View” panel you should see two data sets, named “money chart” and “money 
table”. These were the names of the two “Data to Report” nodes in the “Reporting_w_BIRT” 
workflow. Indeed, when switching from the KNIME workflow editor to the BIRT report editor, 

the data of the “Data to Report” nodes are automatically exported as data sets into the report 
environment. 

Figure 7.20. The "Edit Image Item" window. 
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If you have used obscure 

dataset names and cannot 

remember which “Data to 
Report” node the data set has 
been generated from or to 

check that the data set got 

exported correctly, you might 

need to preview the data in the 

data set. In order to do that: 

 Double-click the data set 

OR Right-click the data set 

and select “Edit” 

 In the “Edit Data Set” window select “Preview Results”  

The Layout 

Let’s now start assembling the report.  Click the “Layout” tab to move away from the Master 
Page editor and back to the Report editor. What we see now is an empty page. First of all, we 

would like to have a title for our report, something like “Project Report: Money Flow” for 
example. We are going to place tables, charts, and more explicative labels under the main title. 

The Title 

To build a title: 

 Drag and drop the “Label” report item from the “Report Items” panel in the bottom left 
corner into the Report editor 

 Double click the label and enter the title: ”Project Report: Money Flow” 

 Select the whole label by clicking its external contour 

 In the “Property” editor under the Report editor, go to the tab called “General” and select 
the properties for your title: font, font size, font style, font color, background color, and so 

on. 

Figure 7.21. "Preview Results" shows the content of the dataset. 
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We chose font “Cambria”, color “green”, size “24 points”, style “bold”, and adjustment 
“centered”.  

Note. The font size settings consist of 2 parameters: the number and the measure unit (%, 

cm, in, points, etc.). Be sure to set both of them consistently! If you set the number to 24 

and the unit to “%” you will not see your title label anymore and will wonder what happened 
to it. 

I am sure you have noticed that the title label has been automatically placed at the top of the 

page and that it spans the complete width of the page. You cannot move it around to place it 

anywhere else nor shrink it to occupy only a part of the page width. This automatic adjustment 

(full page width and first available spot in the page from the top) will affect all report items that 

are dragged from the “Report Items” panel and dropped directly into the Report editor. For the 
title item this is not so bad, since the title usually spans the whole page width and is placed at 

the page top. It is, however, undesirable for most other report items. 

Label        

Property editor        

Figure 7.22. Drag and drop a "Label" item into the Report Editor to create the report title. 
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The Grid 

In our report we would like to have three tables: two tables at the top describing the amount of 

money assigned and used for each project each year, and one table in the middle of the page 

under the two previous tables to show the remaining money. It would also be nice if all tables 

had the same size; i.e. something less than the half of the page width. Under the tables we 

would like to place two bar charts side by side to show respectively how the money has been 

assigned and used. In order to have the freedom to place report items anywhere in the report 

page and to give them an arbitrary size, we need to place them inside a “Grid”. 

A “Grid” is a report item, something like a table that creates cells in the report page with 
customizable location and size to contain other report items.  

For our report, we need: 

 one row with two cells: one for the assigned money table and one for the used money 

table 

 one row with only one cell for the remaining money table  

 one row with two cells again for the 2 bar charts  

We therefore want to create a “Grid” with 3 rows and 2 columns and merge the two cells of the 
second row into one cell only. 

To create the “Grid”: 

 Drag and drop the “Grid” report item from the “Report Items List” panel into the Report 
editor under the title label 

 Enter 2 for the number of columns and accept 3 for the number of rows 

 Select both cells in the second row by clicking the external left border of the row 

 Right-click the two-cells selection  

 Select the “Merge cells” option 
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Note. Sometimes we use over-detailed grids. That means we define grids with more 

columns and rows than necessary. This gives us more freedom in adjusting distances 

between report items and other margins. 

The Tables 

To create a table we can follow the standard procedure: 

 Drag and drop the “Table” report item into the report editor 

 Bind the “Table” to a data set  

 Bind each data cell to a data set field 

OR we can: 

 Drag and drop the data set into the report editor 

Grid        

Figure 7.23. Drag and drop the “Grid” report item into the Report editor, select 3 rows and 3 columns, and merge the 

two cells in the middle row. 
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 In the next window, select the data columns you want to appear in the final report 

The second method is easier, especially for big tables. 

In the report layout a table is composed of three rows:  

 a header row 

 a data cell row 

 a footer row 

The header row and the footer row contain only labels or other static report items and appear 

in the final report only once at the beginning and end of the table respectively. The data cell row 

contains the data set fields. In the real report, the data cell row multiplies into as many rows as 

there are in the data set.  

After dragging and dropping the Data Set into the report editor, we see a table with as many 

columns as there are fields in the data set. The column headers are automatically set as labels 

Dataset <-> table        

Figure 7.24. Drag and drop a dataset from the "Data Set View" panel to produce a table with as many columns as 

many dataset's fields. 
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with the data set field’s name. The footer row is empty. The data cell row contains the data set 
fields. Let’s now adjust the look of the table. 

Remove unwanted Columns 

 Select the whole table. If you hover over the left bottom corner of the table with the mouse, 

a small gray rectangle with the word “Table” appears. To select the whole table, click that 
rectangle. 

 Select the unwanted column. To select a whole column click the gray rectangle above the 

column’s header. 

 Right-click the top of the unwanted column 

 Select “Delete” 

Change Column Header 

The header of each column is an editable label 

 Double click the header label 

 Change the text 

Change Column Position 

 Select the whole table 

 Right-click the top of the column (the gray rectangle) that you want to move 

 Select “Cut” 

 Select the column to be positioned on the left; do this right-clicking the gray rectangle at 

the top of the column 

 Select “Insert Copied Column” 
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Change Font Properties 

 As for “Labels”, in the “Properties” window (“General” tab) you can change font, font size, 
alignment, style, etc. 

Format Number  

 Select a cell containing a number 

 In the “Properties” editor, select the “Format Number” tab 

 Choose the format for the number in your cell 

Define Width and Height 

 Select a row or a column 

 In the “Properties” window, go to the “General” tab and change the height and width 

Set Borders 

 Select the item that needs borders (full table, row, or single cell).  

 In the “Properties” editor, select the “Border” tab 

 Choose the desired border 

Note. The property “Border” is not available for columns. 

Set Table Size 

 Select the whole table  

 In the “Properties” window, select the “General” tab 

 Choose the desired width and height 
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Note. For the font, cell, and table size, the height and width can be expressed in different 

measure units. Verify that the unit you are using is a meaningful one. BIRT performs some 

kind of automatic adjustment on the width and height of the cells. You must define a 

suitable height and width for the full table first for the height and width of the single cells to 

become effective. 

We dragged and dropped the “money table” data set into each one of the two cells in the first 
row and into the only cell in the second row of the “Grid”. The table on the left of the first row 
will show the assigned money. We then deleted all “*used*” and “*remain*” columns. The table 
on the right of the first row will show the used money. We then deleted all “*assigned*” and 
“*remain*” columns. The table in the second row will show the remaining values. Here we 
deleted all “*used*” and “*assigned*” columns.  

In each table, the “RowID” column contains the project name. We therefore changed the header 
label to “Name”. The data and header cell for the “Name” column were left aligned while the 
last 3 cells were all right aligned. The tables had a green border running around it and also a 

green border between the header row and the data row. 

The size of the first two tables was set to 80% (= 80% of the grid cell) and the size of the third 

table, which in a grid cell is double the size of the previous two, was set to 40% (= 40% of the 

grid cell). The alignment property of the three grid cells was set to “Center”.  

In the first table, we then set the font to “Cambria” and font size to “10 points” in both header 
and data cells. The header’s font style was also set to “bold” and the color to “green”. Finally, 
the data cells containing numbers were formatted with “Format Number” set to “Fixed” with 2 
decimal places and 1000s separator. All these operations should be repeated for the second 

and the third table as well. 

Toggle Breadcrumb 

In the top bar you can find the “Toggle 
Breadcrumb” button.  

This button displays the hierarchy of a 

report item over the layout, for example the 

hierarchy of the “assigned 2008”data cell 
as: 

Grid  Row  Cell  Table  Row  Cell  <data set field name> 

Figure 7.25. Toggle Breadcrumb button. 
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Report Preview 

Let’s now create the report (from top menu “Run”  “View Report”  “In Web Viewer”) to have a 
rough idea of what the report will look like. Probably the “large” font size we have chosen for 
the data cells and header cells will be too big for the tables to nicely fit into one page. We can 

easily reduce the font size by setting it to “small” in one or both Style Sheets. This will 
automatically apply to all those table cells that have been formatted by these Style Sheets. This 

is one of the big advantages of using Style Sheets. 

Let’s put a label on top of each table to say what the table represents: “assigned money”, “used 
money”, and “remaining money”. We can then change the column headers from 
“<assigned/used/remain> <year>” to just “<year>”, for example “assigned 2009” to just “2009” 
and so on. Let’s also add a few empty labels after each table to make the report layout more 
spacious. If we run a preview now, the report will look similar to the one shown below. 

Maps  

Sometimes, we might want to map numeric values to descriptive values. For example, in a 

financial report, we can map one column with numeric values as: 

Figure 7.26. Report View on a web browser after creating and formatting the three tables. 
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Values < 0 to  “negative”  
Values = 0 to  “zero” 
Values > 0 to  “positive” 
The mapping functionality is found in the 

“Maps” tab in the “Pr operties” editor of table 
report items; that is cells, rows, columns, and 

even the whole table.  

 Select the data cell, row, column, or table 

to which you want to apply your mapping 

 Select the “Maps” tab in the “Properties” 
editor 

 Click the “Add” button to add a new mapping rule 

 The “New Map Rule” editor opens. 

 Build your condition in the “Map Rule Editor”, for example: 

row[”remain 2009”]     Greater than      0        “positive” 
 Click “OK” 

Figure 7.27. The "New Map Rule" editor. 
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Highlights 

The “Highlights” property works similarly to the “Maps” property, only that it affects the cell and 
row layout rather than cell text content. 

The “Highlights” property is located in the “Highlights” tab in the Property editor of the “Table” 
report items: cells, rows, columns, and the whole table.  

For example, we would like to mark all the cells with a “remain 2009” value smaller than 0 in 
red. 

 Select the data cell [remain 2009] (or another cell, a row, or a column where the 

highlighting should occur) 

 Click the “Highlights” tab in the Property editor 

 Click the “Add” button 

Figure 7.28. The tab "Maps" in the Table Properties Editor defines text mapping for a table item. 
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The “New Highlight” editor opens. In the 
“Condition” section: 

 Enter the rule for the highlight, for 

example: 

Row[remain 2009] smaller 

than 0     

To build the rule you can also use the 

“Expression Editor” which is explained 
later in this chapter. 

 In the “Format” section, enter the 
formatting you want to be applied, when 

the condition is true. 

 Do this by clicking the button next to “Background Color” and then select red in the color 
dialog. 

 Click “OK”  

After closing the Highlight dialog, run a view of the document to see the new red highlighted 

cells. 

Figure 7.29. The "Highlights Rule Editor". 
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The Zebra Style 

The zebra style is very popular for tables in reports. This is where the table’s rows have 
alternating colors. To produce a zebra style table, you need to add the following condition in 

the “New Highlight” editor: 

 Select the whole data row in the table, by selecting the gray rectangle on the left of the 

table row 

 Select the “Highlights” tab in the Property editor 

 Select the “Expression Builder” icon. This is the icon with “fx” close to the “Condition” input 
box 

 In the “Expression Builder” dialog, select “Available Column Bindings” and then “Table” 

 Double-click “RowNum” in the right column of the “Expression Builder” table 

 row.__rownum appears in the “Expression Builder Editor” 

Figure 7.30. The “Highlights” tab in the Properties Editor defines conditional properties for a table item. 
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 Write “row.__rownum % 2” in the 
“Expression Builder ” dialog and click 
“OK” 

 Select “Equal to” and enter “0” in the 
“New Highlights” editor 

 In the “Format” section, select the 
background color “gray” or “silver” in the 
consequent field of the rule  

 Click “OK” 

Run a preview of the document to see the 

zebra style table. 

Page Break 

We want to export the final report to PowerPoint. This first part of our report fits nicely into a 

PowerPoint slide. A page break at this point would be very useful to prevent undesired page 

format effects in the final document.  

To insert a page break after a report item: 

 Select the report item 

 In the Property editor, select the “Page Break” tab 

 Set your page break by changing the page break option from “Auto” to “Always” 

In the example workflow, the page break was set after the “remaining money” table.  

Figure 7.31. The icon to open the "Expression Builder 

Editor". 

Figure 7.32. The Zebra style table. 
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The Charts 

The final part of this report consists of two charts to be placed side by 

side in the last row of the grid. One chart shows assigned money over the 

years and the other chart shows used money over the years. The two 

charts should have an identical look. 

To create a chart, drag and drop the “Chart” report item from the “Report 
Item List” into the report editor.  After the chart has been dropped, the 
“Chart Wizard" opens to guide you in setting the right properties for the 
chart.  

The “Chart Wizard” covers three main steps for all types of charts: 

 Select the Chart Type 

 Select the Data 

 Format the Chart 

The “Chart Wizard” can be reopened at any moment by double-clicking the chart. 

Figure 7.33. "Page Break" tab in the Property editor. 

Figure 7.34. "Chart" 

report item in the 

"Report Item" panel. 
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Select Chart Type 

The first step of the “Chart Wizard” consists of selecting the chart type. There are many chart 
types available, and each chart type has a number of chart subtypes. In addition, each chart 

can be rendered in 2D, in 2D with depth or in full 3D. Flip Axis will change the orientation of the 

chart. The X-axis will then be vertical and Y-axis horizontal. 

 Select your chart type  

 Click “Next” to proceed to the next chart wizard’s step. 

We chose a “Tube” chart type in a simple 2D dimension.  

 

Figure 7.35. First Step of the "Chart Wizard": Select Chart Type. 
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Select Data 

To connect the chart to a Data Set is the second step. 

 Bind the chart with a Data Set with option “Use Data from”. 

 In the data preview table select the column data to be on the X-axis or on the Y-axis or to 

work as group data. Right-click on the column header and select one of those options: 

 Use as Category (X) axis 

 Plot as Value (Y) series 

 Use to group Y-series 

 If you need additional Y-series, select “<New Series …>” in the menu called “Value (Y) 
Series”. 

 Category data are sorted 

on the X-axis in 

descending order by 

default. If you do not want 

any sorting, click the 

sorting icon (the one with 

the down arrow on the 

side of the “Category (X) 
Series:” text box) and 
disable “Grouping”. 

 Sometimes not all data 

rows from the data set 

need to be shown in a 

chart. To filter out rows 

from the data set, click the 

“Filters” button on the 
bottom right and add rules 

to include or exclude rows 

from the data set (see below). 

 Click “Next” to move to the next wizard’s step. 

To filter rows in the data set:  

Sorting icon 

Figure 7.36. Second Step of the "Chart Wizard": Select Data. 
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 Click the “Filters” button 

 In the “Filters” window, click the “Add” button  

The “New Filter Condition” window appears. Insert your filtering rule in the “New Filter 

Condition” window. 

Here on the right is an example of a filtering rule that excludes all rows where column “name” 
= “total”. Notice that “total” is inside quotation marks. Do not forget the quotation marks in a 
string comparison, since BIRT needs quotation marks to recognize strings.  

The first chart is supposed to show the assigned money over the years. We selected: 

 Data set “money chart”  

 Column “name” as Category 
Series (X-axis) unsorted 

 Column “Sum(assigned 
money(1000))” as Y-Series 

 Column “reference year” to group 
the Y-series 

We have only represented one Y-series 

in this chart and no filter was applied to 

the data set rows. 

 

 

 

Figure 7.37. The "Filters" window. 

Figure 7.38. The "Filter Condition Editor". 
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Format Chart 

The last Wizard step guides you 

through the chart layout 

configuration. On the left, a tree 

shows the formatting options 

for the chart. In “Series” you 
can change the name of the Y-

series. The default names are 

just “Series 1”, “Series 2 “, etc. 
In “Value (Y) Series” you can 
add and format labels on top of 

each point of the chart. Under 

“Chart Area” you can define the 
background color and style. 

Under “Axis”, you can define 
labels, scale, gridlines and 

everything else related to the 

chart axis (X-axis or Y-axis). “Title” has options for the title text, layout, and font. “Plot” is similar 
to “Chart Area” but refers only 
to the plotting space. “Legend” 
helps you with the position, 

layout, font properties and 

everything else related to the 

chart legend.  

Series 

In “Series” you can change the 
name (labeled as “Title”) of 
each Y-series. The default 

names are just “Series 1”, 
“Series 2 “, etc…. which are not 
very meaningful.  The Y-series 

can be hidden by disabling the 

Figure 7.39. Third step of the "Chart Wizard": Format Chart. 

Figure 7.40. Chart Format: Series. 
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checkbox “Visible” on the right of the “Title” textbox. 

The “Series Palette” button leads to a choice of colors for the Y-series. You can select a 

different color for each one of the Y-series values. 

We changed the name of the Y-series from “Series 1” to “money assigned”. This name will 
appear in the legend. We kept the default series palette.  

Value (Y) Series 

In “Value (Y) Series” you can 
add labels on top of each point 

of the plot, by enabling the 

option “Show Series Labels”.  

The “Labels” button opens the 
“Series Labels” window to 
format the series labels. 

Series Label window 

The “Series Labels” window 
helps us format the labels on 

top of each point in the plot, 

providing we choose to make 

them visible. 

Here you can define the label 

position, font, background, 

shadow, outline, and even inset points. 

You can also define which values you want shown on top of each point: current Y-value, percent 

Y-value, X-value, or series name. The label can also be built around the shown value with a 

prefix, a suffix, and a separator.  

The small button with an “A” inside leads to the “Font Editor”. 

The “Format” button leads to the “Format Editor” (you need to select an item in the “Values” list 
to enable this button). 

Figure 7.41. Chart Format: Value (Y) Series. 
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There is no “OK” or “Cancel” button in this “Series Labels” dialog. The new settings are applied 
immediately. For the “Projects” report we decided to make the series labels visible. 

Font Editor 

The “Font Editor” is a standard window that you will find in the “Format Chart” step anywhere, 
where it is possible to change a font format. It contains the usual font format options: font 

name, size, style, color. A new option is “Rotation”.  

“Rotation” rotates the label by the required number of degrees. “0 degrees” (= the red dot in the 
tachymeter) corresponds to horizontally written labels. “-90 degrees” writes labels vertically 
from top to bottom. “+90 degrees” writes labels still vertically but from bottom to top. “-45 

Font editor 

Series label window 

Format editor 

Figure 7.42. The "Series Labels" window: The "A" button opens the "Font Editor". The "Format" button opens the 

"Format Editor". 
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degrees” writes labels on a 45 degrees pending line from top to bottom. And so on… The option 
“Rotation” is very useful for crowded charts or for very long labels. 

For the charts in the report “Projects” the only setting we made was to specify the series labels 
font size as 7. 

Format Editor 

The “Format Editor” is used to format numeric values, dates, and even strings. The most 
common usage is however to format numbers.  

There are 4 possible number formats: none, standard, advanced, fraction. A multiplier is used 

to represent numbers with smaller strings, for example money in million units rather than in 

real currency. The fraction digits are the digits after the comma. Prefix and suffix are also 

available to format strings and are used to build a label around the basic value. 

In our chart we formatted the series labels on “Value data” (that is the data of the series) using 
2 decimal digits.   

Chart Area 

In the “Chart Area” you can 
define the background color 

and style of the chart. 

If you click the “Background” 
menu, you are shown a number 

of options you can use to set 

the background: 

 A simple color 

 “Transparent” which 
means no background 

color 

 A gradient between two 

colors  

 A custom color 
Figure 7.43. Chart Format: Chart Area. 
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 An image 

We selected the “Gradient” option.  The “Gradient Editor” needs the start and end color and the 
gradient direction expressed in degrees. Finally, we made the chart outline visible by clicking 

the “Outline” button and enabling the option “Visible” in the “Outline Editor”.  

  

 

 

 

 

 

 

 

 

Axis 

Under “Axis”, you can define the 
type and color of both X-axis 

and Y-axis. There are a few axis 

types available depending on 

the value types displayed on 

the axis (Text, Number, or 

Datetime). Linear and 

logarithmic axes apply only to 

numerical values. 

Let’s leave the default linear 
scale for the value(Y) axis.  

All other axis settings, like 

fonts, gridlines, and scale can 

be defined for each axis 

separately. The two windows 

Figure 7.44. The “Gradient Editor” and the “Outline Editor”. 

Figure 7.45. Chart Format: Axis. 
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for X-axis settings and Y-axis settings are almost identical, besides the two category options in 

the X-axis frame. 

X-Axis / Y-Axis 

Here the user can set an 

appropriate title and make it 

visible.  

The most important part is to 

define the axis labels: format, 

font, and layout. The usual “A” 
button leads the user to the 

“Font Editor”.  

The button with the Format 

icon leads to the “Format 
Editor”.  

The “Label” button leads to the 
“Label Layout Editor”, where we 
can define the label position, 

background, outline, etc. 

The “Scale” button defines the 
step size for numerical values on the axis. It is disabled for text values.  

The “Title” button defines font and layout of the axis title if the checkbox was enabled to make 
the title visible.  

The “Markers” button introduces lines to mark areas of the plot.  

The “Interactivity” button opens the “Axis Interactivity” window 
where you can set an action to follow an event. This is used for 

dashboards or html reports. For example a mouse-click can 

start a Java script. Many events, such as the mouse-click, and 

many actions, such as a hyperlink or a script, are available. 

The “Gridlines” button opens the “Axis Gridlines” window to 
enable gridlines for this axis; that is horizontal gridlines for the 

Y-axis and vertical gridlines for the X-axis.  

Label Layout 
Format Editor 

Font Editor 

Figure 7.46. Chart Format: X-Axis. 

Figure 7.47. The "Axis Interactivity" 

window. 
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There are major and minor grids on the plot as well 

as ticks on the axis. 

For the “Projects” report we enabled the following: 

 Gridlines on the Y-axis, major grid and major 

grid ticks only. We overlooked the minor grid 

not to make the chart too crowded. 

 Labels with font size 7 and rotated to -90 

degrees on the X-axis 

 Title visible on both axis with “Project name” 
as text for the X-axis and “money” for the Y-

axis, font size is set to 8 and rotated to -90 

degrees on the Y-axis 

 

Title 

“Title” sets a title in the chart. If 
you enable the title to be visible, 

the “Title” frame has options for 
the title layout, font, and 

interactivity. I usually do not set 

the title to be visible, because it 

takes space from the chart. I 

use a label on top of the chart in 

the report layout to act as the 

chart title.  

In the “Projects” report we have 
disabled the title.  

Plot 

“Plot” is similar to “Chart Area” but refers only to the plotting space. 

Figure 7.48. The "Axis Gridline" window. 

Figure 7.49. Chart Format: Title. 
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Legend 

“Legend” helps you with the position, the layout, the font properties and everything else related 
to the chart legend. 

If you decide to include a legend in the chart, first of all you need to make the legend visible in 

the legend frame (“Visible” checkbox at the very beginning of the “Legend” frame). 

After that, you need to define the legend layout (“Layout” button) and font properties (“Entries” 
button). 

In the “Projects” report we set the following properties for the legend: 

 Font size: 7 

 Orientation: horizontal 

 Direction: left to right 

Legend Layout 

Legend Entries 

Figure 7.50. Chart Format: Legend. Button "Layout" leads to the "Legend Layout" window. Button "Entries" leads to the 

"legend Entries" window. 
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 Position: above 

When you are finished formatting the chart, click “Finish”. The chart wizard takes you back to 
the report.  

Resize the chart to fit the grid cell. Insert a label above the chart to make the chart title, for 

example where the text is “money assigned per year to each project”. 

Change a format property 

Run a preview of the document. If you do not like what the chart looks like, just go back to the 

“Layout” tab, double-click the chart and change the settings that you did not like. In the 

“Projects” report, for example, the “Series Labels” look a bit too crowded. To disable the “Series 
Labels”: 

 Double-click the chart 

 At the top, select the “Format Chart” tab 

 Select “Value (Y) Series” 

 Disable the “Show  Series Labels” checkbox 

 Click the “Finish” button 

Change data assignment 

We need to create an identical chart on the right cell of the grid, but with reference to the money 

used instead of the money assigned. 

 Copy and paste the chart and its title label from the cell on the left to the cell on the right 

 Double-click the chart on the right 

 Select the “Select Data” tab 

 In “Chart Preview”, right-click the header of column “Sum(money used (1000))” 

 Select “Plot as Value Y Series” 

 Click the “Finish” button 
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Style Sheets 

Sometimes it can be tedious to format all single elements of a report item, especially if many 

of these report items have to be formatted with the same style. For example, in the previous 

section we were supposed to format all data cells and header cells of three tables in the same 

way. To avoid having to repeat such tedious operations, we can use the style sheets. 

Style sheets are widely used in web programming to share style specifications across the many 

elements of web pages. Similarly, the KNIME reporting tool supports style sheets which can be 

used to apply style attributes to multiple report items. 

Create a New Style Sheet 

 Right-click anywhere on the report editor 

 Select “Style” 

 Select “New Style” 

Figure 7.51. Create a new Style Sheet. 
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The “New Style” window opens. 

In the “New Style” window, you need to define: 

 The name of the style sheet in the “General” tab 

 The font properties in the “Font” tab 

 The number properties in the “Format Number” tab  

And so on with more properties in other tabs 

Taking the tables in the previous section as an example, it is easy to see that there are two 

groups of cells for each table: 

 Header cells with font “Cambria”, font size “10 points”, font style “bold”, and font color 
“green” 

 Data cells with font “Cambria”, font size “10 points”, and number format with 2 decimal 
places and 1000s separator 

We then built two style sheets, one for the data cells and one for the header cells with the 

properties listed above. We chose “large” font size for both Style Sheets, named them “data 
cell” and “header cell” and applied them to each header cell and each data cell of the three 

tables.  

Note. Not all font sizes are available in the Style Sheet editor a 

Apply a Style Sheet  

 Right-click the report item (table 

cell, label, etc…) 

 Select “Style” 

 Select “Apply Style” 

 Select the name of the Style 

Sheet you want to apply 

Figure 7.52. The "Edit Style" window. 
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Generate the Final Document 

In order to generate the final 

document, go to the Top Menu:  

 Select “Run”  

 Select “View Report” 

 Select the format for your 

report, for example “PPT” 
for Powerpoint 

 BIRT generates your 

document in the desired 

format. 

Alternatively, “Run”  “Generate Document” directly generates the file in the preferred format. 

Figure 7.53. Apply a Style Sheet to a report item, for example, a data cell. 

Figure 7.54. Generate the final document. 
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Dynamic Text 

A dynamic report item is the 

“Dynamic Text”, which can be found 

in the “Report Items” list in the 
bottom left panel. The “Dynamic 
Text” item displays a small text, built 
with the “Expression Builder”. The 
“Expression Builder” window offers 
the list of operators and BIRT and 

Java Script functions. If the 

dynamic text is included in a table, a 

few additional options appear in the 

Expression Builder, like for example 

the “Available data Sets”. 

The “Operators” category offers a number of mathematical/logical operators. An extract with 
the most frequently used operators is shown in the middle panel.  

The “BIRT Functions” category includes a number of BIRT specifically designed functions in 

the fields of finance, date/time manipulation, duration, mathematics, string manipulation, and 

string or number comparison.  

The “Native JavaScript Functions” category includes a number of JavaScript functions. These 

turn out to be particularly useful when the report is created using the HTML format. 

Double-clicking an item in a sub-panel, such as a column name, a BIRT function, an operator, 

or a Java Script function, automatically inserts the item into the Expression Builder editor 

above. 

The “BIRT Functions” and “JavaScript Functions” categories host a few useful functions, for 
example the date and time functions and the mathematical functions. We could insert the 

current date as a running title in the report, to the right of the logo.  

In the reporting environment, in the “Master Page” tab, in the top header frame, we inserted a 
grid with two columns and one row. The left cell already included the logo. In the right cell we 

wanted to insert a “Dynamic Text” item displaying the current date at report creation. Let’s drag 
and drop a “Dynamic Text” item from the “Report Items” list panel on the bottom left to the right 
grid cell in the top header frame of the “Master Page” tab. The “Expression Builder” window 
opens. In order to display the current date, we have many options.  

Expression Builder Editor 

Figure 7.55. The “Expression Builder” window. 
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We can choose for example a straightforward “BIRT 
Functions”  “BirtDateTime”  “Today()” function. 
“Today()” returns a timestamp date which is midnight of the 
current date. 

The “Today()” function offers no formatting options. If we want to have the current date in a 
customized format we must build that ourselves. “BIRT Functions”  “BirtDateTime” offers a 
number of functions to extract components from a DateTime object, like day(DateTime), 

month(DateTime), year(DateTime) and so on. We could extract the date components and 

combine them with a BirtStr.concat() function to get the desired date format. After extracting 

date parts from the result of the Today() function and combining them with a concat() function, 

we get, for example, the following formula in the “Expression Builder” window: 

BirtStr.concat( "Report created on: ", 

BirtDateTime.month(BirtDateTime.today(), 2), " ", 

BirtDateTime.day(BirtDateTime.today()), ", ", 

BirtDateTime.year(BirtDateTime.today())) 

From that we get the current date format in the 

report running title as shown in the figure on the 

right. 

The “BIRT Functions”  “BirtDateTime” sub-

category also offers a number of functions to add 

and subtract time from a DateTime object. For example, the running title could use the following 

formula with the addQuarter() function: 

BirtStr.concat("Report valid from: ",  

BirtDateTime.today(),  

" to: ", 

BirtDateTime.addQuarter(BirtDateTime.today(),1) 

) 

which produces a date on the running title as follows. 

Note. The change in the date locale is due to the introduction of the concat() function, which 

automatically sets the locale for the DateTime values as well. 

 

Figure 7.56. Current Date from "Today()" 

BIRT Function. 

Figure 7.57. Customized Current Date from 

"Today()" BIRT Function. 

Figure 7.58. Use of the "addQuarter()" function in the Running Title. 
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Note. In the Expression Builder editor text strings must be typed in quotation marks (Java-

style). Text items in a concat() function have to be separated by a comma. 

In this section we have only shown the BIRT functions related to the DateTime object, because 

they are the most commonly used. However, the “BIRT Functions” category offers many built-
in functions for mathematical expressions, finance quantities, string manipulation, etc …  

If the report output document is HTML, we could also take advantage of the built-in JavaScript 

functions, which are more articulated and varied than the built-in BIRT functions. 

7.3. Reporting with Other Tools 

Similar to using BIRT to build your report, you can also use any other reporting tool available 

out there. Most of these tools require a paid license and therefore they will not be described 

Figure 7.59. The "Export_to_Tableau" workflow exports the data into a Tableau formatted file to be later imported into 

the Tableau reporting platform. 
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here in detail. In the material that you have downloaded, you will find in folder Chapter7 a few 

workflows showing the KNIME nodes dedicated to export the data into the reporting tool of 

choice. 

Workflow “Export_to_Tableau” includes the node “Tableau Writer” to write the data into a 
Tableau formatted file to be later imported in the Tableau platform to build the report. Another 

node named “Send to Tableau Server” allows for the direct transfer of data from KNIME 

Analytics Platform into Tableau. 

Workflow “Export_to_PowerBI” uses the node “Send to Power BI”, after previous Microsoft 
authentication, to transfer the data directly into a PowerBI server. 

7.4. Exercises 

Exercise 1 

The exercises for this chapter follow on from the exercises in Chapter 5. In particular, they 

require shaping a report layout for the data sets built in Chapter 5 exercises. 

Using the workflow built in Chapter 5\Exercise 1, build a BIRT report with: 

 A title “income by work class” 

 A table on the left side like: 

Work Class Income <= 50K Income > 50K 

[work class] [nr <= 50K] [nr <= 50K] 

 

 A bar chart with: 

o Work class on the X-axis 

o “Income <= 50K” and “Income > 50K” on the Y-axis 

o Background gradient style 

o Font size 7 on the axis 

o Font size 8 in the legend 

o Legend placed above the plot and running horizontally 
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o No title 

o No axis titles 

 Export as Word document 

Solution to Exercise 1 

 

 

Figure 7.60. Exercise 1: The Final Report. 
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