
KNIME Beginner’s Luck

SANKET JOSHIROSARIA SILIPO

KNIME Textbooks

KNIME v5.2

Copyright © 2023 by KNIME Press

All rights reserved. This publication is protected by copyright, and permission must be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or

transmission in any form or by any means, electronic, mechanical, photocopying, recording or

likewise.

This book has been updated for KNIME 5.2.

For information regarding permissions and sales, write to:

KNIME Press

Talacker 50

8001 Zurich

Switzerland

knimepress@knime.com

ISBN: 978-3-9523926-5-2

www.knime.com

Acknowledgements

First of all, I would like to thank the whole KNIME Team for their patience in dealing with me

and my infinite questions.

Among all others in the KNIME Team I would like to specifically thank Peter Ohl for having

reviewed this book in order to find any possible aspects that were not compatible with KNIME

best practice.

I would also like to thank Casiana Rimbu for the help in providing the most beautiful, clear, and

artistic screenshots I could ever imagine and Meta Brown for encouraging me in the first steps

of developing the embryonic idea of writing this book.

Many thanks finally go to Heather Fyson for reviewing the book’s English.

Preface

This is the first book I wrote in 2010 for the KNIME Press on how to use KNIME Analytics

Platform. Since then, we (the KNIME Press Team and I) have been constantly updating the book

twice a year every year, following each new release of KNIE Analytics Platform; not immediately

after – but close enough.

That is right! KNIME Beginner’s Luck, like all other e-books from KNIME Press, is a live e-book,

constantly changing to fit the newest version of the software – which is also true for the new

and improved UX/UI that came with KNIME Analytics Platform Version 5 in summer 2023. This

liveness of the e-book is also the reason why it has only rarely been printed. Updating printed

pages is undoubtedly harder than updating a pdf file!

As this is the first book, it is inevitably about the basics: the basics of KNIME Analytics Platform

of course and the basics of a data science project. This book guides you through the most

important access functions, data transformation operations, and of course machine learning

nodes available in KNIME Analytics Platform. Supplemented with many example workflows,

exercises, and screenshots, it will quickly familiarize you with the basic functions of the

software. If you are looking for more advanced topics, you won’t find them here, instead….

If you want to learn more about advanced machine learning algorithms, flow variables, or loops,

check the sequel to this book: “KNIME Advanced Luck”. If you want to learn more about text
processing, have a look at the book, “From Words To Wisdom”. If you come from that school
of thoughts where reading manuals or instructions is overrated, you can start directly with

reading about solutions to case studies in various application fields in our

collection “Practicing Data Science”. If your job is more about integrating and blending different
data sources and data types, then the book for you is the “Will they blend?” collection. More
useful booklets are available on the KNIME Press page, if you are transitioning from Excel,

Alteryx, SPSS Modeler, or SAS.

All this is to say that the KNIME Press team and I have been working hard to provide you with

the learning material, books, and tutorials, to become progressively more and more productive

with KNIME Software and data science concepts.

Rosaria Silipo

iv

Table of Contents

CHAPTER 1: INTRODUCTION 1

1.1. PURPOSE AND STRUCTURE OF THIS BOOK 1

1.2. THE KNIME COMMUNITY 2

USEFUL WEB PAGES 2

COURSES, EVENTS, AND VIDEOS 3

BOOKS 4

KNIME COMMUNITY HUB 5

1.3. DOWNLOAD AND INSTALL KNIME ANALYTICS PLATFORM 7

DOWNLOAD KNIME ANALYTICS PLATFORM 8

1.4. WORKSPACE 9

THE WORKSPACE LAUNCHER 10

1.5. KNIME WORKFLOW 10

WHAT IS A WORKFLOW? 11

WHAT IS A NODE? 11

1.6. FILE EXTENSIONS: .KNWF AND .KNAR 12

1.7. KNIME USER INTERFACE 13

1.8. HELP 14

1.9. PREFERENCES 14

TOOL BAR 16

HOTKEYS 17

1.10. MENU 18

1.11. NODE REPOSITORY 19

1.12. SPACE EXPLORER 19

WORKFLOW EDITOR 22

1.13. DOWNLOAD THE KNIME EXTENSIONS 23

INSTALLING KNIME EXTENSIONS 24

1.14. DATA AND WORKFLOWS FOR THIS BOOK 25

1.15. EXERCISES 26

EXERCISE 1 26

EXERCISE 2 26

EXERCISE 3 27

Table of Contents

v

CHAPTER 2: MY FIRST WORKFLOW 30

2.1. WORKFLOW OPERATIONS 30

CREATE A NEW WORKFLOW GROUP 31

CREATE A NEW WORKFLOW 31

SAVE A WORKFLOW 32

DELETE A WORKFLOW 33

2.2. NODE OPERATIONS 33

CREATE A NEW NODE 33

CONFIGURE A NODE 34

EXECUTE A NODE 35

NODE TEXT 35

VIEW THE PROCESSED DATA 35

2.3. READ DATA FROM A FILE 36

CREATE A CSV READER NODE 36

CONFIGURE THE CSV READER NODE 37

CUSTOMIZING COLUMN PROPERTIES 38

THE KNIME:// PROTOCOL 41

2.4. KNIME DATA STRUCTURE AND DATA TYPES 43

KNIME DATA STRUCTURE 44

2.5. FILTER DATA COLUMNS 45

CREATE A COLUMN FILTER NODE 45

CONFIGURE THE COLUMN FILTER NODE 46

2.6. FILTER DATA ROWS 49

CREATE A ROW FILTER NODE 49

CONFIGURE THE ROW FILTER NODE 49

ROW FILTER CRITERIA 51

2.7. WRITE DATA TO A FILE 53

CREATE CSV WRITER NODE 53

CONFIGURE THE CSV WRITER NODE 54

2.8. EXERCISES 56

EXERCISE 1 56

EXERCISE 2 59

CHAPTER 3: MY FIRST DATA EXPLORATION 62

Table of Contents

vi

3.1. INTRODUCTION 62

3.2. REPLACE VALUES IN COLUMNS 64

COLUMN RENAMER 64

RULE ENGINE 66

3.3. STRING SPLITTING 68

CELL SPLITTER BY POSITION 70

CELL SPLITTER [BY DELIMITER] 70

REGEX SPLIT (= CELL SPLITTER BY REGEX) 71

3.4. STRING MANIPULATION 73

STRING MANIPULATION 73

CASE CONVERTER 75

STRING REPLACER 76

COLUMN COMBINER 77

COLUMN RESORTER 78

3.5. TYPE CONVERSION 79

NUMBER TO STRING 80

STRING TO NUMBER 81

DOUBLE TO INTEGER 82

3.6. DATABASE OPERATIONS 82

SQLITE CONNECTOR 84

MYSQL CONNECTOR 85

DB WRITER 86

IMPORT A JDBC DATABASE DRIVER 87

DB TABLE SELECTOR 89

DB READER 90

3.7. AGGREGATIONS AND BINNING 91

NUMERIC BINNER 92

GROUPBY 93

PIVOTING 96

3.8. NODES FOR DATA VISUALIZATION 99

SCATTER PLOT 100

GRAPHICAL PROPERTIES 103

LINE PLOTS AND PARALLEL COORDINATES 105

BAR CHARTS AND HISTOGRAMS 109

3.9. EXERCISES 115

EXERCISE 1 115

Table of Contents

vii

EXERCISE 2 117

EXERCISE 3 118

CHAPTER 4: MY FIRST MODEL 122

4.1. INTRODUCTION 122

4.2. SPLIT AND COMBINE DATASETS 123

ROW SAMPLING 123

PARTITIONING 124

SHUFFLE 125

CONCATENATE 126

4.3. TRANSFORM COLUMNS 128

PMML 129

MISSING VALUE 129

NORMALIZER & NORMALIZER (APPLY) 131

4.4. MACHINE LEARNING MODELS 133

NAÏVE BAYES MODEL 135

SCORER (JAVASCRIPT) 138

DECISION TREE 143

ROC CURVE 152

ARTIFICIAL NEURAL NETWORK 155

WRITE/READ MODELS TO/FROM FILE 159

STATISTICS 162

REGRESSION 165

CLUSTERING 168

HYPOTHESIS TESTING 172

4.5. EXERCISES 172

EXERCISE 1 172

EXERCISE 2 174

EXERCISE 3 175

CHAPTER 5: PREPARING DATA FOR REPORTING 177

5.1. INTRODUCTION 177

5.2. TRANSFORM ROWS 177

Table of Contents

viii

ROWID 180

UNPIVOTING 182

SORTER 183

5.3. JOINING COLUMNS 184

JOINER 185

5.4. MISC. NODES 191

JAVA SNIPPET (SIMPLE) 191

JAVA SNIPPET 193

MATH FORMULA 194

MATH FORMULA (MULTI COLUMN) 196

5.5. CLEANING UP THE FINAL WORKFLOW 198

COLLAPSE PRE-EXISTING NODES INTO A METANODE 199

CREATE A METANODE FROM SCRATCH 200

EXPAND AND RECONFIGURE A METANODE 201

5.6. NEXT STEP: CREATE A REPORT 203

5.7. EXERCISES 203

EXERCISE 1 203

EXERCISE 2 204

EXERCISE 3 205

CHAPTER 6: DASHBOARDS WITH COMPOSITE VIEW 208

6.1. THE DASHBOARD 208

6.2. THE NODES 209

THE OUTPUT WIDGET 210

6.3. THE COMPONENT 211

6.4. ADDING COLORS 214

6.5. THE COMPOSITE VIEW 216

6.6. EXECUTED AS A DATA APP ON THE KNIME BUSINESS HUB 220

6.7. EXERCISES 221

EXERCISE 1 221

CHAPTER 7: REPORTING IN KNIME 223

7.1. KNIME REPORTING (LABS) 223

Table of Contents

ix

HOW TO BUILD THE REPORT DESIGNER 226

7.2. REPORTING WITH BIRT 229

INSTALLING THE REPORT DESIGNER EXTENSION (BIRT) 231

MARKING DATA IN THE WORKFLOW 232

THE BIRT ENVIRONMENT 234

THE LAYOUT 238

THE TABLES 241

THE CHARTS 252

SELECT CHART TYPE 253

SELECT DATA 254

FORMAT CHART 256

STYLE SHEETS 265

GENERATE THE FINAL DOCUMENT 267

DYNAMIC TEXT 268

7.3. REPORTING WITH OTHER TOOLS 270

7.4. EXERCISES 271

EXERCISE 1 271

NODE & TOPIC INDEX 273

1

Chapter 1: Introduction

1.1. Purpose and Structure of this Book

We live in the age of data! Every purchase we make is dutifully recorded; every money

transaction is carefully registered; every web click ends up in a web click archive. Nowadays

everything carries an RFID chip and can record data. We have data available like never before.

What can we do with all this data? Can we make some sense out of it? Can we use it to learn

something useful and profitable? We need a tool, a surgical knife that can empower us to cut

deeper and deeper into our data, to look at it from many different perspectives, to represent its

underlying structure.

Let’s suppose then that we have this huge amount of data already available, waiting to be
dissected. What are the options for a professional to enter the world of Business Intelligence

(BI) and Data Science (DS)? The options available are of course multiple and growing rapidly.

If our professional does not control an excessive budget, he or she could turn to the world of

open-source software. Open-source software, however, is more than a money driven choice. In

many cases it represents a software philosophy for resource sharing and control that many

professionals support.

Inside the open-source software world, we can find a few Data Science and BI tools. KNIME

Analytics Platform represents an easy choice for the non-initiated professional. It does not

require learning a specific script and it offers a Graphical User Interface (GUI) to implement and

document analysis procedures. In addition - and this is not a secondary advantage - KNIME

Analytics Platform can work as an integration platform into which many other BI and Data

Science tools can be plugged. It is then not only possible but even easy to analyze data with

KNIME Analytics Platform and then to build dashboards on the same processed data with a

different BI tool.

Even though KNIME Analytics Platform is very simple and intuitive to use, any beginner would

profit from an accelerated orientation through all of the nodes, categories, and settings. This

book represents the beginner’s luck, because it is aimed to help any beginner to gear up his/her

learning process. This book is not meant to be an exhaustive guide to the whole KNIME

software. It does not cover implementations under the KNIME Business Hub, which is not open-

source, or topics which are considered advanced. Flow Variables, for example, and

Chapter 1: Introduction

2

implementations of database SQL queries are discussed in the sequel book “KNIME Advanced

Luck”.

This book is divided into six chapters. The first chapter covers the basic concepts of KNIME

Analytics Platform, while chapter two takes the reader by the hand into the implementation of

the very first KNIME application. From the third chapter, we start the exploration of data science

concepts in a more in-depth manner. The third chapter indeed explains how to perform some

basic data exploration and visualization, in terms of nodes and processing flow. Chapter four

is dedicated to data modeling. It covers a few demonstrative approaches to machine learning,

Naïve Bayes, decision trees, and artificial neural networks. Finally, chapters five, six, and seven

are dedicated to reporting. Usually, the results of an investigation based on data visualization

or, in a later phase, on data modeling must be shown at some point to colleagues, management,

directors, customers, or external workers. Thus, reporting is a very important phase at the end

of the data analysis process. Chapter five shows how to prepare the data to export into a report,

while chapter six shows how to build the report itself.

Each chapter guides the reader through an ETL or a machine learning (ML) process step by

step. Each step is explained in detail and offers some explanations about alternative

employments of the current nodes. At the end of each chapter several exercises are proposed

to the reader to test and perfect what he/she has learned so far.

Examples and exercises in this book have been implemented using KNIME 5.2. They should

also work under subsequent KNIME versions, although there might be slight differences in their

appearance.

1.2. The KNIME Community

Being an open-source software, KNIME Analytics Platform benefits a number of forums and

groups of KNIME users all around the world. This is a good safety net for advice, hints, and

learning material. We report below the most popular sites and groups.

Useful Web Pages

• KNIME Website: The root page on the KNIME website.

https://www.knime.com

Chapter 1: Introduction

3

• Software Overview: The first place to look for an overview of all KNIME products. The open

source KNIME Analytics Platform can be downloaded here.

https://www.knime.com/software-overview

• Learning Hub: A central spot to access education material to get you started with KNIME.

https://www.knime.com/learning

• KNIME Community Hub: The perfect place to search for nodes or example workflows

when you’re not quite sure what you need yet.

https://hub.knime.com

• KNIME Forum: Come here to engage in community discussion, submit feature requests,

ask for help, or help others yourself!

https://forum.knime.com

• Events and Courses: Information on all our upcoming events including courses, webinars,

learnathons, and summits.

https://www.knime.com/events

• Blogs: A collection of blog posts covering data science with KNIME, a great space to learn

what KNIME can really do.

https://www.knime.com/blog

• FAQ: A collection of some of our most commonly asked questions, check out the forum

if your answer isn’t here!

https://www.knime.com/faq

• KNIME Press: Information on all our available books, like this one!

https://www.knime.com/knimepress

Courses, Events, and Videos

• Courses for KNIME Analytic Platform: KNIME periodically offers onsite and online courses

for the KNIME software. This includes basic and advanced elements. To check for the

next available date and to register, just go to the KNIME Events web page

(https://www.knime.com/events) and select the tab “Online Course”.

Chapter 1: Introduction

4

• KNIME Webinars: A number of webinars are also frequently available on specific topics,

like chemistry nodes, text mining, integration with other analytics tools, automated

machine learning, deep learning, time series analysis, best practices, and so on. To know

about the next scheduled webinars, check the KNIME Events web page

(https://www.knime.com/events) and select the tab “Webinars”.

• KNIME Data Connects, KNIME Data Talks, and KNIME Summits: KNIME Data Connects,

KNIME Data Talks and KNIME Summits are held periodically all over the world. These are

always good chances to learn more about the KNIME software, to get inspired about new

data science projects, and to get to know other people from the KNIME Community. To

check for the next upcoming events, just go to the KNIME Events web page

(https://www.knime.com/events) and select the tabs “Data Talks”, “Summit”, or “Data
Connect”.

• KNIME TV Channel on YouTube: KNIME has its own video channel on YouTube, named

KNIMETV. There, a number of videos are available to learn more about many different

topics and specially to get updated about the new features in the new KNIME releases

(http://www.youtube.com/user/KNIMETV).

Books

• Advanced Features in KNIME Analytics Platform:

For the advanced use: Rosaria Silipo & Victor Palacios, “KNIME Advanced Luck”, KNIME

Press

https://www.knime.com/knimepress/advanced-luck

• Data Science and KNIME:

For an overview of data science, data mining, and data analytics, please check: Berthold,

M.R., Borgelt, C., Höppner, F., Klawonn, F., Silipo, R., “Guide to Intelligence Data Science”,
Springer 2020

https://www.datascienceguide.org/

• Codeless Deep Learning with KNIME:

It is possible to implement deep learning solutions also within KNIME Analytics Platform:

Kathrin Melcher & Rosaria Silipo, “Codeless Deep Learning with KNIME”, Packt, 2020

Chapter 1: Introduction

5

• Codeless Time Series Analysis with KNIME:

A book explaining the main steps for time series analysis using the KNIME time series

components.

Corey Weisinger, Maarit Widmann, Daniele Tonini, “Codeless Time Series Analysis with

KNIME”, Packt, 2022

KNIME Community Hub

However, there is a privileged place where to find information about KNIME nodes and example

workflows for your next projects: the KNIME Community Hub (https://hub.knime.com/).

The KNIME Community Hub is a repository of applications, components, and nodes to recycle,

reuse, and assemble on KNIME Analytics Platform. Or as it says on the home page: The KNIME

Community Hub is “the place to find and collaborate on KNIME workflows and nodes. Here you

can find solutions for your data science questions.”

When you access the KNIME Community Hub the first time, you end up with the page in Figure

1.1. This page offers a few links to the starting guide documentation, the KNIME Forum, and

Figure 1.1. The KNIME Community Hub home page at https://hub.knime.com.

Chapter 1: Introduction

6

the KNIME blog. Most importantly at the top it offers a search box to find applications, nodes,

and components uploaded by KNIME users in this shared place of the KNIME community.

If we type “Customer Intelligence” in the search box, we end up with a list of nodes and
workflows related to Customer Intelligence. If you then select just “Workflows” in the top menu,

you will see a list of applications (workflows) implementing some aspects of Customer

Intelligence - and appropriately tagged - as uploaded by users of the KNIME community. Indeed,

you can upload your own developed applications on the KNIME Community Hub. All you need

is an account with the KNIME Forum.

On the KNIME Community Hub you can also find official dedicated spaces with their own

description and landing page. Try for example to type “Marketing” and select the tag “Marketing
Analytics”. You will get 31 marketing analytics related solutions hosted in the marketing

analytics space and described on the landing page on the right, including relevant links.

Clicking one of the applications in the list opens the corresponding page (Figure 1.3), with a

nice explanatory picture of the implemented workflow.

Figure 1.2. The list of applications (workflows) related (and tagged) with “Marketing Analytics” on the KNIME

Community Hub.

Chapter 1: Introduction

7

On the top right corner, you can see the button to log in with your KNIME account. Being logged

in allows you to upload, download, comment, like, and update the spaces and workflows for

which you have permissions. Below that, you can find the author picture and below that a

number of utility buttons: to download the workflow, to like it, to drag & drop it into KNIME

Analytics Platform, and to copy the short permanent link for this workflow to share.

If you hover over the author image, and if you have editing permissions for this Hub space, a

pen will appear. Clicking on it will allow you to give other KNIME users permission to upload

and change this space.

Notice that the KNIME Community Hub is a repository for workflows, but also for nodes,

components, and extensions.

1.3. Download and Install KNIME Analytics Platform

There are two available KNIME products:

Figure 1.3. The page dedicated to the application named “Customer Segmentation” on the KNIME Community Hub,
with short link https://kni.me/w/37cHxqru6dblIUeP.

Chapter 1: Introduction

8

• the open source KNIME Analytics Platform, which can be downloaded free of charge at

https://www.knime.com/software-overview under the GPL version 3 license

• the KNIME Business Hub, which is described at https://www.knime.com/knime-business-

hub

Analytically speaking, the functionalities of the two products are the same. The KNIME

Business Hub in addition includes a number of useful IT features for team collaboration,

enterprise workflow deployment and management, data warehousing, integration, and

scalability for the data science lab. In this book, however, we will work with KNIME Analytics

Platform (open source). To start playing with KNIME Analytics Platform, first, you need to

download it to your machine.

Download KNIME Analytics Platform

• Go to www.knime.com

• In the upper right corner of the main page, click “Download”

• Provide a little information about yourself (that is appreciated), then proceed to step 2

“Download KNIME”

• Choose the version that suits your environment (Windows/Mac/Linux, 32 bit/64 bit, with

or without Installer for Windows) optionally including all free extensions

• Accept the terms and conditions

• Start downloading. You will end up with a zipped (*.zip), a self-extracting archive file

(*.exe), or an Installer application

• For .zip and .exe files, just unpack it in the destination folder. If you selected the installer

version, just run it and follow the installer instructions.

Chapter 1: Introduction

9

1.4. Workspace

To start KNIME Analytics Platform, open the folder where KNIME has been installed and run

knime.exe (or knime on a Linux/Mac machine). If you have installed KNIME using the Installer,

then you can just click the icon on your desktop or on your Windows main menu.

If you are starting KNIME Analytics Platform for the first time, you will be asked if you want to

share your usage statistics with KNIME. These numbers will be used to fuel the best practice

recommendation engine provided within KNIME Analytics Platform workbench: the Workflow

Coach. No personal information will ever reach KNIME and your anonymous statistics will

never be shared with anybody.

After the splash screen, the “Workspace Launcher” window requires you to enter the path of
the workspace.

Figure 1.4. The KNIME web page.

Chapter 1: Introduction

10

The Workspace Launcher

The workspace is a folder where all

preferences and applications

(workflows), both developed and

currently under development, are saved

for the next KNIME session.

The workspace folder can be located

anywhere on the hard disk.

By default, the workspace folder is

“..\knime-workspace”. However,

you can easily change that, by changing the path proposed in the “Workspace Launcher”
window, before starting the KNIME working session.

Once KNIME Analytics Platform has been opened, from within the KNIME workbench you can

switch to another workspace folder, by selecting “File” in the top menu and then “Switch
Workspace”. After selecting the new workspace, KNIME Analytics Platform restarts, showing

the workflow list from the newly selected workspace. Notice that if the workspace folder does

not exist, it will be automatically created.

When having a large number of customers for example, different workspaces can be used for

each one of them. This keeps each workspace clean and tidy and protects from mixing up

information by mistake.

For this project I used the workspace “Knime-workspace-new”.

1.5. KNIME Workflow

KNIME Analytics Platform does not work with scripts, it works with graphical workflows.

Small little icons, called nodes, are dedicated each to implement and execute a given task.

A sequence of nodes makes a workflow to process the data to reach the desired result.

Figure 1.5. The “Workspace Launcher” window.

Chapter 1: Introduction

11

What is a Workflow?

A workflow is an analysis flow, i.e., the sequence of analysis steps necessary to reach a given

result. It is the pipeline of the analysis process, something like:

Step 1: Read data

Step 2: Clean data

Step 3: Filter data

Step 4: Train a model

KNIME Analytics Platform implements its workflows graphically. Each step of the data analysis

is implemented and executed through a little box, called node. A sequence of nodes makes a

workflow.

In the KNIME whitepaper1 a workflow is defined as follows: "Workflows in KNIME are graphs

connecting nodes, or more formally, direct acyclic graphs (DAG).“

On the right is an example of a KNIME

workflow, with:

• a node to read data from a file

• a node to exclude some data columns

• a node to filter out some data rows

• a node to write the processed data into a file

Note. A workflow is a data analysis sequence, which in a traditional programming language

would be implemented by a series of instructions and calls to functions. KNIME Analytics

Platform implements it graphically. This graphical representation is more intuitive to use,

lets you keep an overview of the analysis process, and makes for the documentation as

well.

What is a Node?

A node is the single processing unit of a workflow.

1 M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Koetter, T. Meinl, P. Ohl, C. Sieb, and B. Wiswedel, “KNIME: The
Konstanz Information Miner”. KDD 2006 (http://www.kdd2006.com/docs/KDD06_Demo_13_Knime.pdf).

Figure 1.6. Example of a KNIME Workflow.

Chapter 1: Introduction

12

A node takes a data set as input, processes it, and makes it available at its output port. The

“processing” action of a node ranges from modeling - like an Artificial Neural Network Learner

node - to data manipulation - like transposing the input data matrix - from graphical tools - like

a scatter plot, to reading/writing operations.

Every node in KNIME has 4 states:

• Inactive and not yet configured → red light

• Configured but not yet executed → yellow light

• Executed successfully → green light

• Executed with errors → red with cross light

Nodes containing other nodes are

called metanodes or components.

On the right are four examples of the

same node (a File Reader node) in

each one of the four states.

1.6. File Extensions:

.knwf and .knar

KNIME workflows can be packaged and exported in .knwf or .knar files. A .knwf file contains

only one workflow, while a .knar file contains a group of workflows. Such extensions are

associated with KNIME Analytics Platform. A double-click opens the workflow inside KNIME

Analytics Platform.

Figure 1.7. The File Reader node in different states.

Figure 1.8. .knwf and .knar files are associated with KNIME Analytics Platform. A double-

click opens the workflow(s) directly inside the platform.

Chapter 1: Introduction

13

1.7. KNIME User Interface

After accepting the workspace path, the KNIME UI opens on a “Getting started with KNIME

Analytics Platform 5” entry page. This page provides access to the local space or create a new

workflow. This page also provides the mount points. You can connect to them for usage by

clicking the sign-in button. The “KNIME User Interface” consists of a top menu, a tool bar, and
a few panels. Panels can be closed, re-opened.

• Home button: This panel shows the list of workflow projects available in the selected

workspace (LOCAL), on the EXAMPLES, on the My-KNIME-Hub (your own space on the

KNIME Community Hub), or on other connected KNIME Hub spaces.

• Quick node adding panel: This is a node recommendation engine. It will provide the list

of the compatible nodes to follow the currently selected node. You will also be able to

search for the other available nodes by typing in keywords in the search field. Double-click

the node you want to add to the workflow, and it will be added and connected

automatically.

• Node Repository: This panel contains all the nodes that are available in your KNIME

installation. It is something similar to a palette of tools when working in a report or with a

web designer software. There we use graphical tools, while in KNIME we use data

analytics tools.

Node Monitor

Workflow Editor

Quick node

adding panel

Node

Repository

Space Explorer

Figure 1.9. The KNIME user Interface.

Chapter 1: Introduction

14

• Workflow Editor: Workflow Editor is the central part of the KNIME UI. A node can be

selected from the “Node Repository” panel and dragged and dropped here, in the
“Workflow Editor” panel. Nodes can be connected by clicking the output port of one node
and releasing the mouse either at the input port of the next node or at the next node itself.

• Space Explorer: To navigate to local or KNIME Hub spaces and access the workflows,

components, and files, you can switch to the “Space Explorer” panel.

• Node Description: If a node or a workflow is selected, the “Node Description” panel on the
left displays a summary description of the node’s functionalities or the workflow’s meta
information.

1.8. Help

The “Help” button is one of the newer options added to the
KNIME User Interface in version 5.2.

It includes a few more buttons; if you click on those

buttons, you will be redirected to the respective website.

1.9. Preferences

Preferences brings you to the window where all KNIME settings can be customized. Under the

item “KNIME” can be found:

• Chemistry – has settings related to the KNIME Renderers in the chemistry packages.

Figure 1.10. The "Help" button in KNIME.

Figure 1.11. The “Preferences” option in the KNIME User Interface.

Chapter 1: Introduction

15

• Databases – specifies the location of specific database drivers, not already available

within KNIME. Indeed, the most common and most recent database drivers are already

available in the driver menu of Database nodes. However, if you need some specific driver

file, you can set its path here.

• Space Explorer – contains the list of the shared repositories via KNIME Hub spaces.

• KNIME GUI – allows the customization of the KNIME workbench options and layout via a

number of settings.

• Master Key – contains the master key to be used in nodes with an encryption option, like

database connection nodes. Since KNIME 2.3 database passwords are passed via the

“Credentials” workflow variables and the Master Key preference has been deprecated.
You can still find it in the Preferences menu for backward compatibility.

• In Meta Info Preferences you can upload meta-info template for nodes and workflows.

• Here you can also find the preference settings for the external packages, like H2O, R,

Report Designer, Perl, Perl, Open Street Map, and others if you have them installed. In

particular, for the external scripts, this page offers the option to set the path to the

reference script installation.

• Finally, Workflow Coach contains the dataset to be used for the node recommendation

engine: the community, a Hub workspace, or your own local workspace.

Chapter 1: Introduction

16

Tool Bar

The tool bar is another important piece of the KNIME User Interface.

From the left, we see

• an icon to save or save as the current workflow. To the left, we find the icon to save the

selected workflow

• undo and redo the changes that were made to the workflow

• execute or execute all (which executes all the selected nodes)

• cancel the executing node(s)

• reset all the node(s) to the original state

• create Metanode

Figure 1.12. The “Preferences” window.

Figure 1.13. The "Create Metanode" button in the tool bar.

Chapter 1: Introduction

17

• create Component,

• the arrow icon which provides the option of selecting, using the annotating mode or using

the panning mode

• and on the right is the zoom (in %) level selection.

For now, let’s have a look at the Create Metanode button. The Create Metanode button creates

a metanode for all the selected nodes. It creates one node inside which you can find all the

selected nodes. This is particularly useful to create a clean and easy-to-use workflow, for

example, by compressing all the nodes used for data cleaning within a Pre-processing

metanode.

Hotkeys

For all keyboard lovers, most KNIME commands can also run via hotkeys. All hotkeys are listed

in the KNIME menus on the side of the corresponding commands or in the tooltip messages of

the icons in the Tool Bar under the Top Menu. Here are the most frequently used hotkeys.

Node Configuration

• F6 opens the configuration window of the selected node

Node Execution

• F7 executes selected configured nodes

• Shift + F7 executes all configured nodes

Stop Node Execution

• F9 cancels selected running nodes

• Shift + F9 cancels all running nodes

Node Resetting

• F8 resets selected nodes

Save Workflows

• Ctrl + S saves the workflow

• Ctrl + Shift + S saves all open workflows

Chapter 1: Introduction

18

• Ctrl + W closes all open workflows

Metanode

• Shift + F12 opens Meta Node Wizard

To move Annotations

• Ctrl + Shift + PgUp/PgDown moves the selected annotation in the front or in the

back of all the overlapping annotations

1.10. Menu

The “Menu” option button is another option added to the
KNIME User Interface in KNIME Analytics Platform v5.2.

Once you click this button, you will see multiple options,

and we will see what each option does.

• Check for Updates: On clicking this option, you can

see if any updates are available for your KNIME

Analytics Platform.

• Show KNIME log in File Explorer: This option will

open a window in your local system where the KNIME

log file is stored.

• Install Extensions: On clicking this option, you will be able to see a list of extensions that

you could install.

• Switch Workspace: This will allow you to change the working directory.

• Switch to Classic User Interface: This option will first ask you to save or not save the

current workflow and then switch to the classic UI. You can also switch back to the

Modern UI from the classic UI by clicking on the “Open KNIME Modern UI” option in the
top right corner of the Analytics Platform.

Figure 1.14. The "Menu" button in the tool

bar.

Chapter 1: Introduction

19

1.11. Node Repository

In the lower left corner, we find the Node Repository,

containing all installed nodes organized in categories and

subcategories. KNIME Analytics Platform has

accumulated by now more than 1500 nodes. It has

become hard to remember the location of each node in the

Node Repository. To solve this problem, two search

options are available: by exact match and by fuzzy match,

both in the search box placed at the top of the Node

Repository panel.

Search Box

At the top of the “Node Repository” panel there is a search box. If you type a keyword in the
search box and hit “Enter”, you obtain the list of nodes containing an exact match of that
keyword. Press the “Esc” key to see all nodes again.

1.12. Space Explorer

We find the Space Explorer panel below the Home button, one of the four panels on the
KNIME User Interface. This panel contains:

• Under LOCAL the workflows that have been developed in the selected workspace

• The mount points to a number of KNIME Hub spaces.

• The workflows contained in the reference workspace of such Hub spaces.

• The access to the My-KNIME-Hub, that is to your space on the KNIME Community Hub.

Remember that you need an account with the KNIME Forum to access this space.

At the beginning, the Space Explorer panel only contains LOCAL, My-KNIME-Hub, and

EXAMPLES. As we already stated, LOCAL shows the content of the selected workspace.

EXAMPLES points to a read-only public repository, accessible via anonymous login. This

repository hosts a number of example workflows that you can use to jump start a new project.

My-KNIME-Hub allows to access your space on the KNIME Community Hub.

Figure 1.15. Word search in the Node

Repository panel: exact match mode.

Chapter 1: Introduction

20

When you open KNIME Analytics Platform for the first time, you will find a folder named

“Example Workflows” containing the solutions to a few common data science use cases,
comprehensive of data.

Folders in “Space Explorer”, containing workflows, are also called “Workflow Groups”.

Note. Space Explorer panel can also host data. Just create a folder under the workspace

folder, fill it with data files on the machine, and select “Refresh” in the context-menu (right-

click) of the “Space Explorer” panel.

My-KNIME-Hub

From the Space Explorer panel, you can access your

spaces on the KNIME Community Hub and upload and

update new or existing content in there.

By default, an authenticated KNIME user has a public

space, for material to share publicly, and a private space

to park his/her own material for further usage. However,

new private or public spaces can be created with a right-

click on My-KNIME-Hub in the Space Explorer panel and

then a selection of the option “Create new Space…”.

By default, you are the only owner of your own spaces.

However, when accessing this space from a web browser,

after hovering on your image in the top right corner, a pen

appears. This will allow us to add colleagues and

teammates as contributors to the space.

EXAMPLES

A link to EXAMPLES is available in the “Space Explorer” panel. This is a repository provided by
KNIME to all users for tutorials and demos. There you can find a number of useful examples

on how to implement specific tasks with KNIME. To connect to the EXAMPLES:

• double click “EXAMPLES” in the “Space Explorer” panel

• double click “Double click to connect…”

Figure 1.16. Space Explorer panel. At the

top the content of the EXAMPLES; below

the content of the LOCAL workspace.

Chapter 1: Introduction

21

You should be automatically logged in as a guest.

To transfer example workflows from the EXAMPLES to

your LOCAL workspace, just drag and drop or copy and

paste (Ctrl-C, Ctrl-V in Windows) them from “EXAMPLES”
to “LOCAL”.

You can also open the EXAMPLES workflows in the

workflow editor, however only temporarily and in read-only

mode. A yellow warning box on top warns that this

workflow copy will not be saved.

The Space Explorer panel can of course host more than one KNIME Hub space. It is enough to

add mountpoints to the list of the available KNIME Hub spaces.

Mounting KNIME Business Hub in Space Explorer

To add KNIME Business Hubs to the “Space Explorer” panel, in the modern UI, click on

“Preferences” -> KNIME -> KNIME Explorer and:

• The “Preferences (Filtered)” window opens on the “KNIME Explorer” page and lists all
KNIME spaces already mounted in this KNIME instance. The three KNIME spaces

available by default on every KNIME instance are the local workspace “LOCAL”, the KNIME
“EXAMPLES”, and the My-KNIME-Hub located on the KNIME Community Hub

(hub.knime.com).

• Use the “New” and the “Remove” button to add /remove connections to remote Hub
spaces.

• After clicking the “New” button, fill in the required information about the KNIME Business

Hub in the “Select New Content” window (Figure 1.18).

Figure 1.17. Space Explorer panel.

Chapter 1: Introduction

22

The same KNIME Explorer “Preferences” page can be reached
via File > Preferences > KNIME Explorer.

To login into any of the available KNIME Business Hubs in the

“Space Explorer” panel:

• right-click or double-click the Hub space name

• provide the credentials

Workflow Editor

The central piece of the KNIME User Interface consists of the

workflow editor itself. This is the place where a workflow is built

by adding one node after the other. Nodes are inserted in the

workflow editor by drag and drop or double-click from the Node

Repository or the Quick node adding panel. The workflow

building process will be described widely in the next sections of this book. Here, we will

describe how to customize and probably improve the canvas role of the workflow editor space.

We will describe two options:

Figure 1.18. The “Preferences (Filtered)” window.

Figure 1.19. The “Select New
Content” window.

Chapter 1: Introduction

23

• change the canvas appearance with grids and different visualizations for the connections;

• introducing annotations to comment the work.

Adding annotations to the canvas

It is also possible to include annotations in the workflow editor. Annotations can help to explain

the task of the workflow and the function of each node or group of nodes. The result is an

improved documentation-like overview of the workflow general task and of the single sub-

tasks.

Workflow Annotations

To insert a new annotation:

• right-click anywhere in the workflow editor

and select “New Workflow Annotation”

• a gray small frame appears; this is the default

annotation frame

• double-click the frame to edit its content

• Notice the tool bar appearing at the top to edit text style, text size, background color, text

alignment, and border properties (color, thickness)

• To reopen an annotation, just double-click anywhere on the annotation

1.13. Download the KNIME Extensions

KNIME Analytics Platform is an open-source product. As every open-source product, it benefits

from the feedback and the functionalities that the community develops. A number of

extensions are available for KNIME Analytics Platform. If you have downloaded and installed

KNIME Analytics Platform including all its free extensions, you will see the corresponding

categories in the Node Repository panel, such as KNIME Labs, Text Processing, R Integration,

and many others. However, if at installation time, you have chosen to install the bare KNIME

Analytics Platform without the free extensions, you might need to install them separately at

some point on a running instance.

Figure 1.20. The Annotation Editor.

Chapter 1: Introduction

24

Installing KNIME Extensions

To install a new KNIME extension from within KNIME Analytics Platform, there are three

options.

1. From the Top right options, select Menu → “Install KNIME Extensions”, select the desired
extension, click the “Next” button and follow the wizard instructions.

2. IF you want install extension from the classic UI, From the Top Menu, select “Help”

“Install New Software”. In the “Available Software” window, in the “Work with” textbox,
select the URL with the KNIME update site (usually named “KNIME Analytics Platform 5.x

Update Site” - http://update.knime.com/analytics-platform/4.x). Then

select the extension, click the “Next” button and follow the wizard instructions.

3. Search the KNIME Community Hub, on a web browser or from the KNIME Community Hub

panel. When the desired extension is found, drag and drop the extension icon from the

browser to the Workflow Editor.

Once the selected KNIME extension(s) has/have been installed and KNIME has been restarted,

you should see the new category, corresponding to the installed extension, in the “Node
Repository”.

In the “Available Software” window you can find some extension groups: KNIME & Extensions,
KNIME Labs Extensions, KNIME Node Development Tools, Sources, and more. “KNIME &
Extensions” contains all extensions provided for the current release; “KNIME Labs Extensions”
contains a number of extensions ready to use, but not yet of x.1 release quality; “KNIME Node
Development Tools” contains packages with some useful tools for Java programmers to
develop nodes; “Sources” contains the KNIME source code. Specific packages donated by third

parties or community entities might also be available in the list of extensions. These are usually

Figure 1.21. The “Available Software” window.

Drag and drop to

Workflow Editor

for installation

Figure 1.22. An extension from the KNIME

Community Hub.

Chapter 1: Introduction

25

grouped under “Community” categories. My advice is to install all extensions, even the
cheminformatics ones. Many of them contain several useful nodes not necessarily restricted

to a particular domain.

1.14. Data and Workflows for this Book

This book builds a few examples and provides the solutions to the exercises. The workflows

are accessible via the KNIME Community Hub and are stored in the KNIME Press space – look

for the respective book and KNIME version. To download material from the KNIME Community

Hub, you need to be logged in with your KNIME account (see how to create a KNIME account).

After entering the KNIME Community Hub, in order to download the workflows, just click on the

cloud icon. Download the whole folder onto your machine from the KNIME Beginner’s Luck

space, which will result in a .knar file. Then double click it OR import it into the KNIME Explorer

via Select “File” → “Import KNIME Workflow…”.

At the end of the import operation, in the Space Explorer panel you should find a KNIME

Beginner’s Luck v5.2 - Exercises folder containing Chapter2, Chapter3, Chapter4, Chapter5,

Chapter6, and Chapter7 subfolders, each one with workflows and exercises to be implemented

in the next chapters. You should also find a KBLdata folder containing the required data.

The data used for the exercises and for the demonstrative workflows of this book were either

generated by the author or downloaded from the UCI Machine Learning Repository, a public

data repository (http://archive.ics.uci.edu/ml/datasets). If the data set belongs to the UCI

Repository, a full link is provided here for download. Data generated by the author, that is not

public data, are located in the KBLdata folder.

Figure 1.23. Beginners Luck space on the KNIME Community Hub.

Chapter 1: Introduction

26

Data from the UCI Machine Learning Repository:

• Adult.data: http://archive.ics.uci.edu/ml/datasets/Adult

• Iris data: http://archive.ics.uci.edu/ml/datasets/Iris

• Yellow-small.data (Balloons): http://archive.ics.uci.edu/ml/datasets/Balloons

• Wine data: http://archive.ics.uci.edu/ml/datasets/Wine

1.15. Exercises

Exercise 1

Create your own workspace and name it “book_workspace”. You will use this workspace for
the next workflows and exercises.

Solution to Exercise 1

• Launch KNIME

• In Workspace Launcher window,

click “Browse”

• Select the path for your new

workspace

• Click “Launch”

To keep this as your default workspace, enable the option on the lower left corner.

Exercise 2

Install the following extensions:

• KNIME Database

• KNIME Javascript Views

• KNIME Report Designer

Figure 1.24. Exercise 1: Create workspace “book_workspace”.

Chapter 1: Introduction

27

Solution to Exercise 2

From the Top right corner options, select Menu → “Install Extensions”. Search and select the

required Extensions. Click “Next” and follow the instructions.

Exercise 3

Search all “Row Filter” nodes in the Node Repository. From the “Node Description” panel, can
you explain what the difference is between a “Row Filter”, a “Reference Row Filter”, and a
“Nominal Value Row Filter”? Show the node effects by using the following data tables:

Original Table

Position Name Team

1 The Black Rose 4

2 Cynthia 4

3 Tinkerbell 4

4 Mother 4

5 Augusta 3

6 The Seven Seas 3

Reference Table

Ranking Scores

1 22

3 14

4 10

Figure 1.25. Exercise 2: List of KNIME Extensions. Figure 1.26. Exercise 2: Reporting Extension.

Chapter 1: Introduction

28

Solution to Exercise 3

Row Filter

The node allows for row filtering according to certain criteria. It can include or exclude certain

ranges (by row number), rows with a certain row ID, and rows with a certain value in a selectable

column (attribute). In the example below, we used the following filter criterion: team > 3

Original Table

Position Name Team

1 The Black Rose 4

2 Cynthia 4

3 Tinkerbell 4

4 Mother 4

5 Augusta 3

6 The Seven Seas 3

Filtered Table

Position Name Team

1 The Black Rose 4

2 Cynthia 4

3 Tinkerbell 4

4 Mother 4

Reference Row Filter

This node has two input tables. The first input table, connected to the bottom port, is taken as

the reference table; the second input table, connected to the top port, is the table to be filtered.

You have to choose the reference column in the reference table and the filtering column in the

second table. All rows with a value in the filtering column that also exists in the reference

column are kept, if the option “include” is selected; they are removed if the option “exclude” is
selected.

Reference Table

Ranking Scores

1 22

3 14

4 10

Filtering Table

Position Name Team

1 The Black Rose 4

2 Cynthia 4

3 Tinkerbell 4

4 Mother 4

5 Augusta 3

6 The Seven Seas 3

Chapter 1: Introduction

29

Resulting Table

Position Name Team

1 The Black Rose 4

3 Tinkerbell 4

4 Mother 4

In the example above, we use “Ranking” as the reference column in the reference table and

“Position” as the filtering column in the filtering table. We have chosen to include the common
rows.

Nominal Value Row Filter

Filters the rows based on the selected value of a nominal attribute. A nominal column and one

or more nominal values of this attribute can be selected as the filter criterion. Rows that have

these nominal values in the selected column are included in the output data. Basically, it is a

Row Filter applied to a column with nominal values. Nominal columns are string columns and

nominal values are the values in it.

In the example below, we use “name” as the nominal column and name = Cynthia as the

filtering criterion.

Original Table

Position Name Team

1 The Black Rose 4

2 Cynthia 4

3 Tinkerbell 4

4 Mother 4

5 Augusta 3

6 The Seven Seas 3

Filtered Table

Position Name Team

2 Cynthia 4

30

Chapter 2: My First Workflow

2.1. Workflow Operations

If you have started KNIME for the first time, your “Space Explorer” panel on the top left corner
of the KNIME User Interface contains only one workflow group (folder) named “Example

Workflows”. This “Example Workflows” folder contains a number of sub-folders, each with

basic workflows for very common use cases:

• Basic Examples. Workflows in “Basic Examples” sub-folder show basic general

operations, like import data, data blending, ETL, train and evaluate a model, and finally

display results in a simple report.

• Customer Intelligence. Basic workflows for churn prediction, credit scoring, and

customer segmentation are available inside sub-folder “Customer Intelligence”.

• Retail. A recommendation engine is built in sub-folder “Retail”.

• Social Media. An example of social media analysis is available in “Social Media”.

These example workflows can be reused and readapted for your own application. However, in

this chapter we want to build our own very first workflow, to perform the following basic

operations:

• Read data from a text file

• Filter out undesired rows

• Filter out undesired columns

• Write resulting data to a CSV file

We will use this first workflow to explore data structures and data types, node and workflow

commands, debugging and data inspection possibilities, commenting options, configuration

windows and execution commands, and other features available inside the KNIME User

Interface.

In order to keep our space clean, we use workflow groups to organize workflows by chapter or

topic. Let’s create now a new workflow group and call it “Chapter2”. Once this has been done,
we need to populate the newly created workflow group with a new workflow, let’s call it “My

Chapter 2: My First Workflow

31

First Workflow”. Eventually in the “Space Explorer” panel, you should see workflow group
“Chapter2” with a workflow named “My First Workflow” in it. For now, “My First Workflow” is an
empty workflow. Indeed, if you double-click it, the workflow editor opens to an empty page.

Let’s see now how to perform some workflow operations, including creating, saving, and
deleting a workflow.

Create a New Workflow Group

If you click on the Home Button:

• Click on the LOCAL workspace

• Select “Create Folder”

In the “Create Folder” dialog:

• Enter the name of the workflow group

Note. If you select an existing workflow group in

KNIME Explorer, right-click, and start the “New KNIME
Workflow Group Wizard”, the default destination will be
under the selected workflow group.

Create a New Workflow

In the “Space Explorer” panel:

• Right-click anywhere in the LOCAL workspace (or in a Hub space)

• Select “New KNIME Workflow”

Figure 2.1. Create new workflow group.

Figure 2.2. Create a new

workflow group named for

every chapter.

Chapter 2: My First Workflow

32

In the “New KNIME Workflow Wizard” dialog

• Enter the name of the new workflow

• Click “Create”

Note. If you select an existing workflow group in KNIME Explorer, right-click, and start the

“New KNIME Workflow Wizard”, the default destination will be in the selected workflow
group.

To create a new workflow from the Space

Explorer, click on the black button with three dots,

and a window will pop up with multiple options like

Create workflow, Create folder, Import workflow,

and Connect to Hub.

Save a Workflow

To save a workflow, click the disk icon in the

toolbar. This either only saves the selected workflow open

in the workflow editor or you can Save as the workflow with

a different name as well. Saving the workflow saves the

workflow architecture, the nodes’ settings, and the data
produced at the output of each node.

Figure 2.4. Create a new workflow in Space Explorer

named “My First Workflow” under “Chapter2”.

Figure 2.3. Create new workflow.

Figure 2.5. “Save” options to save

workflow.

Chapter 2: My First Workflow

33

Delete a Workflow

To delete a workflow

• Right-click the workflow in the “Space Explorer” panel

• Select “Delete”

• In the “Confirm Deletion” dialog, you will be asked if
you really want to delete the workflow.

Beware! The “Delete” command removes the workflow
project physically from the hard disk. Once it is deleted,

there is no way to get it back.

2.2. Node Operations

In Chapter 1, we have seen that a node is the basic computational unit in a KNIME workflow.

We have also seen that nodes are available, organized by categories, in the Node Repository

panel in the side panel of the KNIME User Interface. And we have seen that every node has four

states: not yet configured (red), configured (yellow), successfully executed (green), and

executed with error (red with cross).

In this section we are going to explore:

• how to add a new node to a workflow (final status = inactive, not configured; red light),

• how to configure the node (final status = configured, not executed; yellow light), and

• how to execute the node (final status = successfully executed; green light).

Create a New Node

To create a new node, you have two options:

• drag and drop the node from the Node Repository panel into the workflow editor

• double-click the node in the Node Repository panel

The node is usually imported with red traffic light status.

To connect a node with existing nodes, there are two more options:

Figure 2.6. Delete a workflow.

Chapter 2: My First Workflow

34

• click the output port of the first node and release the mouse at the input port of the second

node

• select a node in the workflow and double-click a node in the Node Repository: this creates

a new node and automatically connects its first input port to the first output port of the

existing node. Shift + double clicking the new node moves the connection to the next input

port.

• In the Modern UI, clicking the node's output port gives the + in a dotted square symbol

and shows all the compatible nodes to the current node. If you click one of the nodes from

the panel, a connection is established between the two nodes.

Once the node has been created, we need to configure it, i.e. to set the parameters needed for

the node task to be executed.

Let’s then open the node configuration window and configure the node.

Finally, we need to associate a meaningful description to this node for documentation

purposes, to easily recognize which task it is performing inside the workflow. Each node is

created with a default text underneath as “Node n”, where “n” is a progressive number. This

node text can be customized. This, together with the workflow annotations described in chapter

1, keeps the overview of the workflow clear and fulfills the purpose of workflow documentation.

Configure a Node

To configure an existing node:

• Double-click the node, OR

• Right-click the node and select “Configure”

Figure 2.7.Drag and drop or double-click the node to create a new node in the workflow

editor.

Chapter 2: My First Workflow

35

If all input ports are connected, the configuration dialog appears

for you to fill in the configuration settings. Every node has a

different configuration dialog since every node performs a

different task.

After a successful configuration, the node switches its traffic light

to yellow.

Execute a Node

The node is now configured, which means it knows what to do. In

order to actually make it perform its task, we need to execute it. To

execute a node and let it run its task:

• Right-click the node & select “Execute”, OR

• Select the node and click the single green arrow in the tool bar

If execution is successful, the node switches its traffic light to

green.

Node Text

In order to change the text located under the node:

• Double-click the node text, so that it becomes editable

• Write the new text. The text can span more lines, separated by “Enter”

• Click outside the node to commit the text change

View the Processed Data

If the execution was successful (green light), you can inspect the processed

data. You can either right-click on the node and select the open output port

and in that, you can select the table which will open a new window with the

output table or you will find the output table below the “workflow editor.

Figure 2.9. Right-click the node

and select “Execute” to run the
node.

Figure 2.8. Right-click the node

and select “Configure” or
double-click the node to

configure.

Figure 2.10. Double-

click the node name

to edit it.

Chapter 2: My First Workflow

36

The output table shows the processed output and statistics of all the columns in the “Statistics”
tab.

Some nodes might produce more than one output data set.

There is a tab beside the “Output Table” tab “Flow Variable”, which lists the flow variables. The
concept of “Flow Variable” is explained in detail in the book KNIME Advanced Luck.

2.3. Read Data from a File

The first step in all data analytics projects consists of reading data. Local data is usually read

from a file or from a database. In this chapter we describe how to read and write data from and

to a text file. Reading and writing data from and to a database is described in Chapter 3 in

section “Database Operations”.

Most common file format is the Comma Separated Values (CSV) format, that covers all text

files where fields are separated by a special character. To read this kind of files of data, the

CSV Reader node is the most versatile node in KNIME Analytics Platform.

Create a CSV Reader Node

In the “Node Repository” panel in the bottom left corner:

• Expand the “IO” category and then the “Read” sub-category OR alternatively type “CSV
Reader” in the search box

• Drag and drop the “CSV Reader” node into the workflow editor (or double-click it)

• If the “Description” panel on the right is enabled, it shows all you need to know about the
“CSV Reader” node: task, output port, and required settings.

• To activate the “Description” panel, go to the Top Menu, open “View” and select
“Description”.

Figure 2.11. Right-click the node and select the last option in the context menu to visualize the processed data.

Chapter 2: My First Workflow

37

Note. Under the newly created “CSV Reader” node you might notice a little yellow warning
triangle. If you hover over it with the mouse, the following tooltip appears: “No Settings
available”. This is because the CSV Reader node has not yet been configured (it needs at

least the file path!). At the moment, the node is in the red traffic light state: not even

configured.

Configure the CSV Reader Node

To configure the CSV Reader node,

• double-click the node, OR

• Right-click the node and select “Configure”

In the configuration dialog:

• Specify the file path, by typing or by using the “Browse” button. For this example, we used
the adult.csv file, downloadable from the UCI Machine Learning Repository

(http://archive.ics.uci.edu/ml/datasets/Adult) or available in KBLdata/adult data

set/adult.csv.

• In most cases, the “CSV Reader” node automatically detects the file structure.

Figure 2.12. Create a CSV Reader node.

Drag & drop or

double-click

the node

Add node

description

Chapter 2: My First Workflow

38

• If this is not one of most cases and the CSV Reader node has not guessed the file structure

exactly, then tray with the button “Autodetect format” and/or enable/disable all required
checkboxes in the tabs at the top, according to the file data structure.

• A preview of the read data is available in the lower part of the configuration window and

shows possible reading errors.

• On the right of the OK/Cancel buttons in the lower part of the window, there is a small

button carrying a question mark icon. This is the help button and leads to a new window

containing the node description.

Customizing Column Properties

It is possible to customize the way that each column data is read.

Figure 2.13. Configuration window of the CSV Reader node.

Chapter 2: My First Workflow

39

For example, the adult.csv file contains a field unclearly named “fnlwgt”. We can change this
column header to a more meaningful “final weight” in the Transformation tab (Figure 2.14), just

by writing the new name in the corresponding New Name field.

In the Settings tab (Figure 2.13), we can also set: the delimiter character that separates the

column, whether to use the first data row for the column headers, whether to use the first

column as RowIDs, and if we can tolerate shorter data rows.

The Limit Rows tab allows to skip the first lines in the text file. This is usually very useful when

dealing with files with a header text.

The Advanced Settings tab offers a few additional settings, and the Encoding tab allows to set

the right encoding for the text.

Notice the three dots in the lower left corner of the CSV Reader icon. These dots indicate

dynamic port. By clicking on the three dots, you can add one or more input ports to this node

Figure 2.14. Customize how to read columns.

Chapter 2: My First Workflow

40

to connect to an external file system, like Amazon S3, HDFS, Databricks, Micrsoft Azure, and

so on …

The three dots in a node always mean dynamic ports.

Note. After configuring the CSV Reader node, its state moves to the yellow traffic light.

What we have described here is the long way to get a CSV Reader node configured! Since this

(node creation and configuration) is a way that works for all nodes, we could not avoid going

through it. However, if the file has a known extension, such as .csv or .txt, there might be a

faster way.

Note. Instead of manually writing the full file path in the Input Location/File field in the CSV

Reader configuration window, we could just drag and drop the file from the Space Explorer

panel into the workflow editor. If the file has a known extension (like .csv for example), this

automatically creates the appropriate reader node and configures it.

Notice that when you create a CSV Reader this way, you will get a different protocol in the URL

box. By browsing to a file, you get a file:// protocol; by drag and drop you get a knime:// protocol

(Figure 2.15). This special protocol is paired with the option “Custom/KNIME URL” in the Read
From field.

Other options available to locate a file in the Input Location part of the configuration window of

a CSV Reader node are from Local File System, from a specific Mountpoint, from a relative

location, and the Custom/KNIME URL that we have already seen. The first three options define

the starting point for the file path.

• “Local File System” treats the file path as an absolute path.

• “Mountpoint” defines your path as a relative path to the Mountpoint selected in the
secondary menu on the right, that is: LOCAL as the current workspace folder, My KNIME

Hub (you need to be logged in to see the option), another workspace, or the EXAMPLES.

Figure 2.15. Automatic configuration of the Input Location part in the Settings tab of a CSV Reader node created via

drag & drop of a file from the KNIME Explorer panel into the workflow editor panel.

Chapter 2: My First Workflow

41

• “Relative to” defines the path of the file relatively to a given location, as specified in the
secondary menu on the right: the current workflow folder, the data folder within the current

workflow folder, current workspace, and current mountpoint.

• “Custom/ KNIME URL” refers to the usage of the knime:// protocol

The Browse button can help you find the file while the “Read from” option will write it in the right
format.

Notice that in Reader and Writer nodes that still do not have the “read from” field, the knime://

protocol still works. Let’s have a look at the different knime:// protocol options.

The knime:// Protocol

The knime:// protocol is a special protocol that allows you to reference the local workspace or

the local workflow in a path. This then permits the creation of relative paths making you

independent of the workspace folder absolute URL, but just dependent on the workspace folder

structure.

This feature is particularly useful when moving workflows around to other workspaces or even

to other machines. As long as the folder structure of data and workflow is preserved, the CSV

Reader will keep finding the file and reading it.

The knime:// protocol works on all reader and writer nodes.

We also need to assign this node a meaningful comment so that we can easily recognize what

its task is in the workflow. The default comment under our CSV Reader is “Node 1” because it
was the first node we created in the workflow. In order to change the node’s comment:

• Double-click the “Node 1” label under the CSV Reader node

• Enter the node’s new comment (for example “Adult data set”)

• Click elsewhere

Figure 2. 16. Options available in the “Read from” field in the Input Location part in the Settings tab of a CSV Reader

Chapter 2: My First Workflow

42

We have now changed the comment under the CSV Reader node from “Node 1” to “Adult data
set with file:// protocol”.

Note. Notice the three dots in the lower left corner of the node. Clicking on them allows you

to connect to an external file system and access files from there.

After configuration, in order to make the node really read the file, we need to execute it. Thus,

proceed as follows:

• Right-click the node

• Select “Execute”

Note. If the reading process has no errors, the node switches its traffic light to green.

Note. On every configuration window you will find a tab, called “Flow Variables”. Flow
Variables are used to pass external parameters from one node to another. However, we are

not going to work with Flow Variables in this book, since they belong to a more advanced

course on KNIME functionalities.

The “IO” → “Read” category in “Node Repository” contains a number of additional nodes to read
files in different formats, like Excel, CSV, KNIME proprietary format, and more. The “IO”/”File
Handling” category has nodes to read special formats and special files, like for example ZIP

files, remote files, etc.

Figure 2.17. Possible paths using knime:// protocol.

Chapter 2: My First Workflow

43

2.4. KNIME Data Structure and Data Types

If the node execution was successful, you can now see the resulting data.

• Right-click the “CSV Reader” node

• Select option “File Table”

A table with the read data appears. Let’s have a look at this table to understand how data is
structured inside KNIME. First of all, data in KNIME is organized as a table. Each row is

identified by a Row ID. By default, Row IDs are strings like “Row n” where “n” is a progressive
number. But RowIDs can be forced to be anything, with the only condition that they must be

unique. Not unique RowIDs produce an error.

Columns are identified by column headers. If no column headers are available, default column

headers like “Col n” – where “n” is a progressive number – are assigned. In adult.data file

column headers were included. We enabled the checkbox “Read column headers” in the
configuration window of the CSV Reader node and we now have a header for each column in

the final data table. Even column headers need to be unique. If a column header occurs more

than once, KNIME Analytics Platform adds a suffix “(#n)” (n = progressive number) to each

multiple occurrences of the column header.

Each column contains data with a set data type. Available data types are:

• Double (“D”)

• Integer (“I”)

• String (“S”)

• Date&Time (calendar + clock icon)

• Unknown (“?”)

• Other specific domain related types (like Document in the text processing extension,

Image in the image processing extension, or Smiles in chemistry extensions)

Date&Time type can come from importing data from a database. It does not appear from

reading data from a file. In text files, dates and times are read just as strings. You then need a

String to Date&Time node to convert a String into a Date&Time type column.

Unknown type refers to columns whose type could not be determined, like for example with

mixed data types or with all missing values.

Chapter 2: My First Workflow

44

Missing values are data cells with a special “missing value” status and are displayed by default
with a question mark (“?”), unless the display character for the missing values was set
otherwise in the CSV Reader node configuration.

Note. Missing values are represented by default with question marks. They are not question

marks, they are missing and are represented with question marks. Question marks in the

text file are correctly read as question marks, but they are not missing data. Missing values

could be represented by anything else as defined in the configuration window of the CSV

Reader node.

KNIME Data Structure

Data in KNIME are organized as a table with a fixed number of columns. Each row is identified

by a Row ID. Columns are identified by column headers. Each column represents a data type:

• Double (“D”)

• Integer (“I”)

• String (“S”)

• Date&Time (calendar + clock icon)

• Unknown (“?”)

• Other domain related types

Chapter 2: My First Workflow

45

Clicking the header of a data column allows to sort the data rows in an ascending / descending

order. Right-clicking the header of a data column allows to visualize the data using specific

renderers. For Double/Integer data, for example, the “Bars” renderer displays the data as bars
with a proportional length to their value and on a red/green heatmap.

You can temporarily sort the data by clicking the column header and select the kind of sorting.

You can temporarily change the data renderer by right-clicking the column header and change

to a different renderer either numerical or bar based. Both those operations are just temporary.

If you close the data table and reopen it, the default window will be back.

2.5. Filter Data Columns

In the next step, we want to filter out the column “final weight” from the read data set. In the

“Node Repository” panel, on the left, there is a whole category called “Manipulation” with nodes
dedicated to managing the data structure. This category includes operations on columns, rows,

and on the full data matrix.

Create a Column Filter Node

• In the “Node Repository” panel, find the node “Column Filter” under “Manipulation” →

“Column” → “Filter” or search for “Column Filter” in the search box.

Figure 2.18. The KNIME Data Structure.

Chapter 2: My First Workflow

46

• Drag and drop the “Column Filter” node from the “Node Repository” to the workflow editor
or double-click it in the “Node Repository”

• The description for this node appears in the “Node Description” panel on the right

• Connect the “Column Filter” node with the previous node (in our workflow, the “CSV
Reader” node) by clicking at the output of the “CSV Reader” node and releasing at the
input of the “Column Filter” node.

To configure the node:

• Double-click the node or right-click the node and select “Configure”

• The configuration window opens. The node’s configuration window contains all settings
for that particular node.

• Set the node configuration settings

• Click “OK”

Configure the Column Filter Node

The first setting in the configuration window is the type of filtering. You can select and retain

columns manually, by type, or by name, according to the options at the top of the configuration

window (Figure 2.20).

Figure 2.19. Creating a Column Filter node.

Chapter 2: My First Workflow

47

Manual Selection:

If the “Manual Selection” option is selected,
the configuration window shows 2 sets of

columns (Figure 2.20):

• The columns to be included in the data

table (“Includes” set on the right)

• The columns to be excluded from the

data table (“Excludes” set on the left)

The “Search” bar allows to search for a

specific column.

You can add and remove columns from one set to the other on double click.

• “Includes” keeps the “Include” set fixed. If one more input column is added from the
previous node, this new column is automatically inserted into the “Exclude” set.

• “Excludes” keeps the “Exclude” set fixed. If one more input column is added from the
previous node, this new column is automatically inserted into the “Include” set.

Wildcard/Regex Selection:

In case the “Wildcard/Regex Selection” option
is enabled, the configuration window presents

a textbox to edit the desired wildcard or regular

expression.

Columns with names matching the expression

will be included in the output data table.

Figure 2.20. Configuration window of the Column Filter

Figure 2.21. Column Filter node Configuration:

"Wildcard/Regex Selection".

Chapter 2: My First Workflow

48

Type Selection:

If the “Type Selection” option is enabled, you
are presented with a series of checkboxes

about the types of columns to keep in the

output data table.

Selecting all Numbers checkboxes, for

example, Number(integer) will keep all

numerical columns only in the node’s output
table.

Selected String will keep all String type

columns only in the output table.

Remember this column selection frame that comes with the “Manual Selection” option,
because it will show up again in all those nodes requiring column selection.

In our example workflow “my First Workflow”, we wanted to remove the “final weight” column.

We set the column filter mode to “Manual Selection” and we populated the Exclude panel with
column “final weight”.

After completing the configuration, we right-clicked the “Column Filter” node and commented
it with “rm column ‘final weight’”.

We finally right-clicked the node and selected “Execute” to run the column filter.

To see the final processed data, we clicked the “rm column “final weight”” node and see the

“Filtered Table” in the Node Monitor. The column “final weight” was not to be found in the
Column Filter’s output data table.

Figure 2.23. The column filtered table does not contain the column "finale weight".

Figure 2.22. Column Filter node configuration: "Type.

Chapter 2: My First Workflow

49

2.6. Filter Data Rows

If you have had a deeper look into the data we are currently analyzing, you have seen that each

record describes a person in terms of age, job, education, and other general demographic

information. We have seen how to remove a data column from a data table. Let’s see now how
to exclude data rows from a data table.

Let’s suppose that we want to retain all records of people born outside of the United States.
That is, we want to retain only those rows with “native-country” other than “United States”. We
need to use a Row Filter node.

Create a Row Filter Node

In the “Node Repository” panel, open the node category “Manipulation” and navigate to the node
“Row Filter” in “Manipulation” → “Row” → “Filter” or search for “Row Filter” in the search box.

Drag and drop or double-click the “Row Filter” node in the “Node Repository” to create a new
instance in the workflow editor panel.

The task and settings description for this node can be found in the “Node Description” panel
on the right or clicking the help button in the configuration window at the right of the “Cancel”
button.

Connect the “Row Filter” node with the “Column Filter” node previously created.

Configure the Row Filter Node

Double-click the “Row Filter” node to open its configuration window.

The node implements three filter criteria:

• Select rows by attribute value (pattern matching)

o Value matching: column value matching some pre-defined pattern value (wild-cards

and regular expression are allowed in pattern definition)

o Range checking for numerical columns: column value above or below a given value

o Missing Value Matching

• Select rows by row number

Chapter 2: My First Workflow

50

• Select rows by RowID (pattern matching on RowID)

Each of these criteria can be used to include or to exclude rows.

• Implement your row filter criterion

• Click “OK”

Below you can find a more detailed description of the row filter criteria available in the Row

Filter node configuration.

The Row Filter node is not the only way to perform row filtering in KNIME, even though probably

it is the easiest one and works for 80% of your row filtering needs. Other row filtering options

are offered by:

• “Nominal Value Row Filter” node for multiple pattern matching in “OR mode” (example:
native-country = “United Stated” OR native-country=”Canada” OR native-country=”Puerto
Rico”);

• “Rule Based Row Filter” node to define an arbitrarily complex set of IF-THEN row filtering

rules, even spanning multiple columns;

• “Geo-Coordinate Row Filter” node in KNIME Labs category for row filtering based on
geographical coordinates;

• “Date&Time-based Row Filter” node to perform a row filtering on a Date&Time type
column;

Figure 2.24. Creating a Row Filter node.

Chapter 2: My First Workflow

51

• “Database Row Filter” node to implement a row filtering SQL query to run directly on the
database.

Row Filter Criteria

By Attribute Value:

All rows, for which the value in a given

column matches a pre-defined pattern,

are filtered out or kept. After you select

the “column to test”, you need to define
the matching mode.

For String/Integer/Date&Time values,

“use pattern matching” requires the
given pattern to be either entered

manually or selected from a menu

populated with the column values as

possible pattern values. A matching

value with wildcards * (for example

“United*”) or with a regular expression

is also possible.

For Integer values, “use range
checking” requires a lower
boundary and/or an upper

boundary, which will coincide if the

condition is equality.

For Missing values, choose the

last matching option.

By Row Number:

If you know where your desired or

undesired rows are, you can just

Figure 2.25. Row Filter criterion by attribute value.

Figure 2.26. Row Filter criterion by row number.

Chapter 2: My First Workflow

52

enter the row number range to be filtered out.

For example, if I know that the first 10 rows are comments or just garbage, I would select the

filter criterion “exclude row by number” and set the row number range 1-10.

By RowID:

A special row filter by attribute value runs on the

RowIDs.

Here the matching pattern is given by a regular

expression. The regular expression has to match

the whole RowID or just its beginning.

In order to retain all rows with data referring to

people born outside of the United States, we need

to:

• Set filter mode “exclude row by attribute
value”

• Set the column to test to “native-country”

• Enable “use pattern matching”, because it is a string comparison

• Set pattern “United-States”

We have just implemented the following filter criterion: native-country != “United
States”

• Give the Row Filter node a meaningful comment. We commented it with “just keep records
born outside US”. The comment on a node is important for documentation purposes.
Since KNIME is a graphical tool, it is easy to keep an overview of what a workflow does, if

the name of each node gives a clear indication of its task.

• Right-click the node and select “Execute” to run the row filter

To see the final processed data, right-click the node “born outside US” and see the filtered table

below in the Node Monitor. There should be no “United States” in column native-country.

Figure 2.27. Row Filter criterion by RowID.

Chapter 2: My First Workflow

53

2.7. Write Data to a File

Now we want to write the processed data table to a file. There are many nodes that can write

to a file. Let’s choose the easiest and most standard format for now: the CSV (Comma
Separated Values) format.

Create CSV Writer Node

In the “Node Repository”:

• Expand category “IO”/”Write” or search for “CSV Writer” in the search box

• Drag and drop (or double-click) the node “CSV Writer” to create a new node in the workflow
editor

• Right-click the “CSV Writer” node and select “Configure” or double-click it to open its

configuration window.

• Configuration window has four tabs: Settings, Advanced Settings, Comment Header, and

Encoding

The configuration window of the CSV Writer node is similar to the configuration window of the

CSV Reader node.

Figure 2.28. The row filtered table has no pattern "United States" in column "native-country".

Chapter 2: My First Workflow

54

Configure the CSV Writer Node

The “Settings” tab is the most important tab of this configuration window. It requires:

• The path of the output file in Output Location. Notice that Output Location offers the same

options as the Input Location in the CSV Reader node.

• A few additional options about the data structure, such as:

o Whether to write the column headers and/or RowID in output file

o The Column Delimiter character

Figure 2.29. Create and configure a "CSV Writer" node.

Chapter 2: My First Workflow

55

o The writing mode if file already exists: Overwrite, Append, Fail (does not write to file)

The Advanced Settings tab allows for a few more specs, like the quote character, the decimal

separator, or the compression to a gzip file. The Comment Header tab allows to automatically

write a header with comments on top of the data. The Encoding tab chooses the appropriate

encoding for the text. The Memory Policy tab contains a few options that might speed up the

node execution. This tab is common to the configuration window of all nodes.

In this book we do not investigate the Flow Variables tab and the Job Manager Selection tab.

Note. Writing in mode “Append” can be tricky, because it just appends the new data to an
existing file without checking the data structure nor matching the column by name. So, if

the data table structure has changed, for example because of new or deleted columns, the

output CSV file will not be consistent anymore.

In some cases, you might want to select “Fail” as over-writing mode, in order to avoid

overwriting the existing file.

• Let’s now change the node’s comment:

• Click the node label under the node

• Enter the node’s new comment (for example “write new file”)

• Click elsewhere

• Right-click the node and select “Execute”

You can also make the node comments more verbose if you want to add more information

about the node settings and implemented task. At this point we also add a few annotations to

make even clearer what each node or group of nodes does.

We have created our first workflow to read data from a file, reorganize rows and columns, and

finally write the data to an output file.

Chapter 2: My First Workflow

56

2.8. Exercises

Exercise 1

In a workflow group “Exercises” under the existing workflow group “Chapter2” create an empty
workflow “Exercise1”. Workflow “Exercise1” should perform the following operations:

• Read file data1.txt (from the KBLdata folder) with column “ranking” as String and named
“marks”;

• Remove initial comments from data read from file;

• Remove column “class”

• Write final data to file in CSV format (for example with name “data1_new.csv”) using
character “;” as separator

Enter a short description for all nodes in the workflow. Save and execute workflow “Exercise1”.
Execution must be without errors (green lights for all nodes).

Figure 2.30. Workflow "My First Workflow".

Chapter 2: My First Workflow

57

Solution to Exercise 1

The file has some comments at the very beginning, which of course do not have the same

length as the other lines in the file.

First, you need to enable the options “has column headers” and “support short data rows” in
the “Settings” tab and rename column “ranking” as “marks” in the “Transformation” tab.

Then you can do one of the two approaches:

1. Set the “Skip first data rows …” to 5 in the “Limit Rows” tab.

2. Use the “Row Filter” node to exclude the first 5 rows of the read data.

Again, the solution workflow is available in the folder of workflows you downloaded from the

KNIME Community Hub.

Figure 2.31. Exercise 1: Two possible solution workflows.

Chapter 2: My First Workflow

58

Figure 2.32. Exercise 1: CSV Reader "Settings" tab

configuration.

Figure 2.33. Exercise 1: CSV Reader "Limit Rows" tab

configuration.

Figure 2.35. Exercise 1: CSV Writer "Settings" tab

configuration.

Figure 2.34. Exercise 1: Column Filter configuration.

Chapter 2: My First Workflow

59

Exercise 2

In the workflow group “Chapter2\Exercises” create a workflow “Exercise2” to perform the
following operations:

• Read the CSV file written in Exercise1 (“data1_new.csv”) and rename column “marks” to
“ranking”

• filter out rows with value ‘average’ in the ‘comments’ column

• Exclude Integer type columns

• Write final data to file in “Append” mode and with a tab as a separating character

• Rename all nodes where necessary. Save and execute workflow “Exercise2”.

Solution to Exercise 2

We recycled the workflow structure from the workflow created in Exercise 1. That is, we did a

“Copy and Paste” operation (Ctrl-C, Ctrl-V) on the whole “Exercise 1” workflow from the
workflow editor for “Exercise 1” into the workflow editor for “Exercise 2”.

Note. After copying the “CSV Reader” node from Exercise 1, you need to disable the option
“Limit Rows” in the “Advanced Settings” window, because this file has no initial comments.

Figure 2.36. Exercise 2: The workflow.

Chapter 2: My First Workflow

60

Figure 2.40. Exercise 2: CSV Writer configuration. Figure 2.39. Exercise 2: Column Filter configuration.

Figure 2.37. Exercise 2: CSV Reader “Settings”
configuration.

Figure 2.38. Exercise 2: Row Filter configuration.

Chapter 2: My First Workflow

61

Note. We saved the data in “Append” mode into the CSV file. The data from Exercise 2 has

only 3 columns, while the existing data in the file has 4 columns. The “CSV Writer” node
does not check the consistency of the number and the position of the columns to be written

with the number and the positions of the existing columns. It is then possible to write

inconsistent data to a file. You need to be careful when working in “Append” mode with a
“CSV Writer” node.

62

Chapter 3: My First Data Exploration

3.1. Introduction

This chapter describes a few data wrangling nodes useful to bring the data into the desired

shape, involving data transformation, string manipulation, rule application, and other similar

tasks. For that, we will use three workflows: “Column Rename Example”, “Write To DB” and “My
First Data Exploration”. “Column Rename Example” is a very simple workflow showing the
usage of the Column renamer node, “Write To DB” writes data into a database, and “My First
Data Exploration” reads the same data from the database and graphically explores the data.

The goal of this chapter is to become familiar with:

• nodes and options for database handling

• the “Views” category containing nodes for graphical data exploration

• a few more column operation nodes, like nodes for string manipulation and missing value

handling

We start from the very well-known Iris Dataset, downloaded from the UCI Machine Learning

Repository (http://archive.ics.uci.edu/ml/datasets/Iris) and available under the KBLdata folder,

to prepare the data for the next graphical exploration. The Iris dataset describes a number of

iris plants by means of 4 attributes:

• the sepal length

• the sepal width

• the petal length

• the petal width

The plants described in the data set belong to three different iris classes: Iris setosa, Iris

versicolor, and Iris virginica.

Chapter 3: My First Data Exploration

63

This dataset has been used for many years as a standard for classification. The three classes

are not all linearly separable. Only two of the three iris classes can be separated by using a

linear function on two of the four numeric attributes. For the third class we need to use

something more sophisticated than a linear separation. The first two classes and their possible

linear separation can be clearly identified by using graphic plots. This is the reason why we use

this dataset to illustrate the KNIME nodes for visual data exploration.

We will use this chapter also to explore string manipulation and how to create new rule-based

values from existing columns’ values.

In the “KNIME Explorer” panel, we create now a new workflow group named “Chapter3”, to
contain all workflows created in this chapter of the book. Under workflow group “Chapter3” we
create two empty workflows: “Write To DB” and “My First Data Exploration”. As we said at the

beginning of this section, “Write To DB” will show how to build a new dataset and how to write
it into a database, while “My First Data Exploration” will describe how to perform a visual
exploration of the data.

Let’s start with reading the data in the “Column Rename Example” workflow. Since the Iris
dataset file (iris.data) is not in a standard data format, we cannot directly drag and drop it to

the workflow editor. Instead, we read it with a “CSV Reader” node. If we do not change the name

of the data columns in the Transformation tab, then the node will read a data table like the one

in figure 3.1. We write the comment “read the iris.data file from KBLdata folder” under the “CSV
Reader” node, for a quick overview of the node task.

Note. The iris dataset file does not contain column names. The “CSV Reader” node then
assigns to each column a default name like “Column0”, “Column1”, “Column2”, “Column3”,
and “Column4”. Besides “Column4”, where we can see that this is the iris class, we need to

read the file specifications in file “iris.names” to understand which column represents
which numerical attribute.

Figure 3.1. The iris dataset.

Chapter 3: My First Data Exploration

64

3.2. Replace Values in Columns

After reading the description of the iris data set in the iris.name file, we discover that the five

columns are organized as follows:

1. Sepal length in cm

2. Sepal width in cm

3. Petal length in cm

4. Petal width in cm

5. class

And that there are no missing values in the data set. Thus, the first step is to rename the data

set’s columns, in order to be able to talk clearly about what we are doing on the data. KNIME
has a node “Column Rename” to be used exactly for this purpose.

Column Renamer

The node “Column Renamer” can be found in the “Node Repository” panel under “Manipulation”
→ “Column” → “Convert & Replace”.

The “Column Renamer” node allows for the renaming of columns in the input data table.

Figure 3.2. Create a Column Renamer node.

Chapter 3: My First Data Exploration

65

In the configuration window we have on the left the list of candidate columns for renaming; on

the right the list of the columns actually selected for renaming.

The configuration dialog requires:

• to select the columns on which to operate by double-click in the left panel

• to flag the columns whose name or type needs changing (checkbox)

• to provide the new column names

• and optionally the new column types

We created a Column Renamer node, and we

connected it to the CSV Reader node. We then

assigned new names to the data table

columns according to the “Iris.name”
specification file and we ran the “Execute”
command. The same operation could have

been executed in the Transformation tab of

the CSV Reader node. This is what we did in

the second workflow of this chapter “Write To
DB”.

Let’s suppose now that the iris names in the

“class” column are too long or too complex
for our task and that we would like to have just

class numbers: “class 1”, “class 2”, and “class
3”. That is, we would like to add a column
where “Iris-setosa” from column “class” is translated into “class 1”, “Iris-versicolor” into “class
2”, and finally all remaining instances belong to a “class 3”.

KNIME has a very practical node: the “Rule Engine” node. This node defines a set of rules on
the values of the input data columns and generates new values according to the defined rule

set. The new values can form a new column to append to the existing ones in the input data

table or replace an existing data column.

The rule set that we would like to implement in this case is the following:

IF class = “Iris-setosa” THEN class 1

IF class = “Iris-versicolor” THEN class 2

ELSE class 3

The Rule Engine node uses the following syntax to express this same rule set:

Figure 3.3. Configuration dialog of the Column Renamer

node. The button with “Trash” symbol is there to remove

an already selected column from the renaming panel.

Chapter 3: My First Data Exploration

66

$class$ = "Iris-setosa" => "class 1"

$class$ = "Iris-versicolor" => "class 2"

TRUE => "class 3"

Where $class$ indicates values in input column “class”, “Iris-setosa” is the match String for the
“=” operator, “=>” introduces the rule consequent, and “class 1” is the consequent value.

Note. Fixed string values need to be encapsulated in between quotation marks to be

correctly interpreted as strings by the “Rule Engine” node.

The final keyword “TRUE” represents the ELSE value in our list of rules, i.e., the value that is

always true if no other rule is applied first.

Note. To insert a constant value in a data column, you can just use

TRUE => <new constant value>

with no other rule in a “Rule Engine” node. Alternatively, you can use the “Constant Value
Column” node.

Rule Engine

The node “Rule Engine” is located in the “Node
Repository” panel in the category
“Manipulation” → “Row” → “Other”.

This node defines a set of rules and creates

new values based on the set of rules and the

input column values.

The configuration dialog includes:

• The list of available input data columns

• The list of available functions and

operators

• A description panel to describe the usage and task of the selected function/operator

• A rule editor where to edit the set of rules

• The option to create a new column in the output data table or to replace an existing one

Figure 3.4. Location of the "Rule Engine" node in the

"Node Repository" panel.

Chapter 3: My First Data Exploration

67

Column List

The first panel on the left upper corner of the “Rule Engine” configuration window shows all
available columns from the input data table. Those are the columns our set of rules is going to

work on.

Flow Variable List

The panel right below the “Column List” panel contains all flow variables available to the node.
However, flow variables are not treated in this book and we will ignore them when setting up

our set of rules.

Function

The “Function” panel contains a list of functions and logical operators available to create the
rule set. The “Category” menu on top of the “Function” list, allows to reduce the function list to
a smaller subset.

Input

columns
Functions and

Operators

Rule Editor

Functions/Operator

Description

Figure 3.5. The configuration window of the "Rule Engine" node.

Chapter 3: My First Data Exploration

68

Description

If a function or an operator is selected in the “Function” list, this panel provides a description
of its task and usage.

Expression

The “Expression” panel is the rule editor. Here you can type your set of rules. If you need to
involve a data column or a function, just double-click the desired item in the respective panel

and it will appear in the rule editor with the right syntax.

Every rule consists of a condition (antecedent), including a function or an operator, and of a

consequence value. The symbol “=>” leads the condition to the consequence value, like:
<antecedent> => <consequence value>. “TRUE” in the last rule leads to the default
value, when none of the previous conditions apply. The rule can be edited and changed at any

time.

To build our rule set, we typed in the set of rules described above.

Append Column / Replace Column

At the bottom of the configuration window, there are the options to choose whether to create

a new data column or replacing an existing one. The default option is “Append Column” and
the default name for the new column is “prediction”. We selected the default option, and we

named the new column “class nr”.

After configuration, we commented the Rule Engine node as “from iris names to class no” and
we ran the “Execute” command.

3.3. String Splitting

In this section we explore how to perform string manipulation with KNIME. For example, how

can we split the column “class” in a way as to have “Iris” in one column and “setosa”,
“versicolor”, or “virginica” in another column? Vice versa, how can I build a key to uniquely

identify each row of the data table?

In KNIME there are 3 nodes to split string cells.

Chapter 3: My First Data Exploration

69

• “Cell Splitter by Position” splits each string based on character position. The column to

split contains string values. The node splits all strings in the column in k substrings, each

of length n1, n2, n3,… nk, where n1+n2+n3 +… nk = L is the length of the original strings.
Each substring is then placed in an additional column. Notice that for this node all input

strings need to be at least L-character long.

• “Cell Splitter [by Delimiter]” uses a delimiter character to extract substrings from the

original strings. Strings can be of variable length. If the delimiter character is found, the

substring before and after will end up in two different additional columns. The name of

the node is actually just “Cell Splitter”. However, since it uses a delimiter character I will
call it “Cell Splitter [by Delimiter]”.

• “Regex Split” is a Cell Splitter by Regex. It uses a Regular Expression rule to recognize

substrings. After the substrings have been recognized the node splits the original string

into the recognized substrings and places them into different additional columns.

Unlike the split column operation, there is only one node to combine string columns: the

“Column Combiner” node.

• The “Column Combiner” node concatenates the strings from two or more columns and

puts the result into a new appended column.

Note. All string manipulation nodes, like the “Cell Splitter” nodes and the “Column
Combiner” node, are located in the “Node Repository” panel in: “Manipulation” → “Column”
-> “Split & Combine”.

In the column “class” we want to separate substring “Iris” from the remaining substrings
“setosa”, “versicolor”, or “viriginica”.

• If we split by position, we need to split at the 4th character (at the end of “Iris” and before
the rest of the string) and at the 5th character (before “setosa”, “versicolor”, or “virginica”).

• If we split by delimiter, we need to split around character “-“.

• Finally, if we split by RegEx, we need to find a Regular Expression rules to express “Iris”, “-

“, and the remaining letters. A possible regular expression could be: ((Iris)[\-]*([A-
Za-z]*).

Let’s see now in detail how to use the three “Cell Splitter” nodes to do that.

Chapter 3: My First Data Exploration

70

Cell Splitter by Position

This node splits the column string values based on character position. The result consists of

as many new columns as many position indices plus 1. The configuration window asks for:

• The split indices (the character positions inside the string on which to split) comma

separated.

• The new column names (the new column names are always one more than the number

of split indices). The new column names have to be comma separated.

• The name of the string column on which to perform the splits.

We selected:

• Split position indices 4 (at the end of word

“Iris”) and 5 (after “-“)

• We will obtain 3 substrings: “Iris” in column
“split_0”, “-“in column “split_1”, and
“setosa”/”virginica”/”versicolor” in column
“split_2”

• The column to perform the split on is

“class”

Column “split_1” will contain only strings “-“. We
can always remove it later on by means of a “Column Filter” node.

Cell Splitter [by Delimiter]

This node splits the column string values at a delimiter character. The result will be as many

new columns as many delimiter characters have been found plus one. The configuration

window requires the following settings:

• The name of the column on which to perform the splits

• The delimiter character

• The output type:

o As new columns to append to the data table (here you need to set the array size)

Figure 3.6. Configuration dialog for the Cell Splitter by

Position node.

Chapter 3: My First Data Exploration

71

o As one column only containing the list/set of sub-strings (a set of strings is like a list

but without duplicate values)

If many splits are forecasted, the first option can quickly add too many new columns to the

output data set and become unmanageable. On the opposite, the second option adds only one

additional column to the output data set, compacting all substrings into a collection type

column.

The size of the resulting array of substrings can be set a priori or, if we do not know it, we can

let the node guess the best size. This last option works for most of the string splitting tasks.

For more complex tasks, we might need to set the array size manually ourselves.

In case we set a fixed array size, if the array size

is smaller than the number of detected

substrings, the last splits will be ignored. On the

other side if the array size is bigger than the

number of detected substrings, the last new col

umns will be empty. We selected:

• Column to split = “class”

• Delimiter character = “-“

• Array size = 2 and substrings to be output

as new columns

The substrings will be stored in new columns

named “<original_column_name>_Arr[0]” and
“<original_column_name>_Arr[1]”, that is based
on our configuration settings “class_Arr[0]” and
“class_Arr[1]”.

Note. Here there is no column with only strings “-“. All characters “-“ are lost.

RegEx Split (= Cell Splitter by RegEx)

This node identifies substrings in a selected string column on the basis of a Regular

Expression. Substrings are represented as Regular Expressions inside parenthesis. The original

strings are then split in substrings identified by such regular expressions. Each substring will

create a new column. The configuration window requires:

Figure 3.7. Configuration dialog for the Cell Splitter

node.

Chapter 3: My First Data Exploration

72

• The name of the column to split

• The Regular Expression patterns to identify the substrings, with the substrings included

in parenthesis

• A few additional options to consider multi-line strings and use a case sensitive/insensitive

match

To separate the word “Iris” from the rest of the string in column “class” by using a “RegEx Split”
node, we selected:

• Column to split (Target Column) = class

• Regular Expression: ((Iris)[\-]*([A-Za-z]*), which means:

o First substring in parenthesis contains the word “Iris”

o Then comes a “-“ not to be used as a
substring, since it is not in parenthesis

o The second substring can contain any

alphabetical character

o The result are two substrings named

“split_0” and “split_1”, one containing
the word “Iris” and the other containing
the remaining word “setosa”,
“versicolor”, or “virginica”.

The same result could have been obtained with a

more general Regular Expression, like for example ([A-Za-z]*)[\-]*(.*$), which means:

• First substring in parenthesis contains any alphabetical character

• Then comes a “-“ not to be used as a substring, since it is not in parenthesis

• The second substring can contain any alphanumerical character

These “Cell Splitter” nodes have all been named “iris + attr”, which describes the split between
word “iris” and the following attribute “versicolor”, “virginica”, or “setosa”.

Figure 3.8. Configuration dialog for the RegEx Split

node.

Chapter 3: My First Data Exploration

73

3.4. String Manipulation

Let’s suppose now that we want to rebuild the iris class name but with a different string
structure, for example “<attribute>:IRIS”, with the word IRIS all in capital letters and <attribute>
being “virginica”, “setosa”, or “versicolor”. We need then to replace the string “Iris” with “IRIS”
and to recombine it with the <attribute> string. In KNIME there are many nodes to perform all

kinds of string manipulation. One node in particular, though, can perform most of the needed

string manipulation tasks: the “String Manipulation” node.

String Manipulation

The “String Manipulation” node can perform a number of string manipulation tasks, like to
calculate a string length, to compare two strings, to change a string into only uppercase or

lowercase characters, to replace a substring or all occurrences of a character inside a string,

to capitalize the string words, to find the positions of a character or substring occurrence, to

extract a substring from a string, and so on.

The configuration window of the “String Manipulation” node is similar to the one of the “Rule
Engine” node.

Column List

Function Category List

Function List

Expression Editor

Function Description

Figure 3.9. Configuration dialog for the String Manipulation node.

Chapter 3: My First Data Exploration

74

The “Expression Editor” is located again in the central lower part of the configuration window.
Here a number of string functions can be nested and combined together to obtain the desired

string transformation.

The available string functions are listed above in the “Function List” panel. Functions can also
be visualized in smaller groups, by selecting a category in the “Category List” menu over the
“Function List” panel.

The “Description” panel on the right explains the task of the selected function.

On the left, in the “Column List” panel, all available data columns are displayed. Double-clicking

a column or a function automatically inserts it in the “Expression Editor” with the correct syntax.
Fixed string values have to be reported in quotation marks, for example “abc”, when introduced

in the “Expression Editor”.

The “Insert Missing As Null” flag enables the production of a null string, instead of an empty
data cell, when the string manipulation function is somehow unsuccessful.

The configuration window finally requires the name of the new or of the existing column,

depending on whether the resulting string has to overwrite existing data.

The “String Manipulation” node that we introduced in the “Write To DB” workflow follows the
“Cell Splitter” node and combines (function “join()”) the <attribute> part of the class name in
column class_Arr[1] with fixed string “:” and with the uppercase version (function

“uppercase()”) of the word “iris”. The result is for example “setosa:IRIS” for the original string
“Iris-setosa”. Notice that the splitting of the original string into the substrings contained in
class_Arr[] could have also been obtained inside the String Manipulation node using a substr()

function.

Note. Functions “toInt()”, “toDouble()”, “toBoolean()”, “to Long()”, “toNull()”convert a string
respectively into an integer, a double, and so on. They can be used to produce a non-string

output column at the output port of the String Manipulation node.

The String Manipulation node is particularly useful when we want to combine a number of

different string functions into a single more complex one. However, an alternative processing

uses a sequence of single dedicated nodes. This approach leads to a more crowded workflow,

but it provides an easier interpretation of all used string manipulation functions.

To switch from lower to upper case or vice versa, the “Case Converter” node in the category
“Manipulation” → “Column” → “Transform” can be used.

Chapter 3: My First Data Exploration

75

Case Converter

This node transforms the string characters into lowercase or uppercase depending on the

“Select mode” flag. The configuration window requires:

• “Select mode”: “UPPERCASE” or “lowercase”

• The names of the columns to transform. These columns are listed in the frame “Include”.
All other columns that will not be affected by the transformation are listed in the frame

“Exclude”.

• To move from frame “Include” to frame “Exclude” and vice versa, use buttons “add” and
“remove”. To move all columns to one frame or the other, use buttons “add all” and
“remove all”

We connected a “Case Converter” node to the output port of the “Cell Splitter” node. Of course

we could have connected the “Case Converter” node to the output port of any of the “Cell
Splitter” nodes. We chose the “Cell Splitter” node just as an example. Then we configured the
“Case Converter” node like that:

• “Select mode” is set to “Convert to UPPERCASE”

• Columns to change is only “class_Arr[0]”, which is the column containing the word “Iris”,
in the “Include” set

To replace a string in general, there is a “String Replacer” node in “Manipulation” → “Column”
→ “Convert & Replace”.

Figure 3.10. Configuration window for the Case Converter node.

Chapter 3: My First Data Exploration

76

This node has a variant “String Replace (Dictionary)” that performs the string replacements
based on a previously formatted dictionary text file. This node can be useful to replace multiple

strings and substrings with the same string value.

The corresponding function in the String Manipulation node would be upperCase().

String Replacer

The “String Replacer” node replaces a pattern in the values of a string type column. The
configuration window requires:

• The name of the column where the pattern has to be replaced

• The pattern to match and replace (wildcards in the

pattern are allowed)

• The new pattern to overwrite the old one

And a few more options:

• Whether the pattern to be matched and replaced

contains wildcards or is a regular expression

• Whether the replacement text must replace all

occurrences of the pattern as isolated strings only

or as substrings as well

• Whether the pattern match has to be case sensitive

• Whether escape characters are indicated through a

backslash

• Whether the result replaces the original column

(default) or creates a new column

To change string “Iris” into string “IRIS”, we connect a
“String Replacer” node to the output port of the “Cell
Splitter” node and use the following configuration:

• Target column is “class_Arr[0]”, which contains string “Iris”

• Pattern to be replaced can be “Iris” or more generally “Ir*” with a wildcard “*”

• The new pattern to overwrite the old one is “IRIS”

Figure 3.11. Configuration window for the

String Replacer node.

Chapter 3: My First Data Exploration

77

Result column “class_Arr[0]” contains all “IRIS” strings, exactly like the column generated with
the “Case Converter” node. Finally, we want to combine all those substrings in a new string
column named “iris name” and containing strings structured as: “<attribute>:IRIS”. To combine
two or more string columns, there is the “Column Combiner” node under “Manipulation” →

“Column” → “Split & Combine”.

The corresponding function in the String Manipulation node would be replace().

Column Combiner

The “Column Combiner” node combines two or more string columns into a single string
column, optionally joining them through a delimiter character. The configuration window

requires:

• The delimiter character (if any, this field can also be empty)

• If we want to include the original substrings in quotes, then flag “Quote always” must be
enabled and the “Quote character” must be supplied

• The name of the new column

Figure 3.12. Configuration window for the Column Combiner node.

Chapter 3: My First Data Exploration

78

• The names of the columns to combine. These columns are listed in the frame “Include”.
All other columns that will not be used for the combination are listed in the frame

“Exclude”.

To move from frame “Include” to frame “Exclude” and vice versa, use buttons “add” and
“remove”. To move all columns to one frame or the other use buttons “add all” and “remove
all”.

To obtain the final string values “<attribute:IRIS>”, we need a “Column Combiner” node with the
following settings:

• Delimiter is “:”

• Columns to combine in the “Include” frame are “class_Arr[1]” and “class_Arr[0]”

• No quotes around the original strings, that is flag “Quote always” is disabled

• Name of the new column is “iris name”. Notice that this node has no option to replace an
input column with the new values

The corresponding function in the String Manipulation node would be join().

Note. In the “Column Combiner” node it is not possible to arrange the columns’
concatenation order. Columns are combined following their order in the input data table.

For example, column “class_Arr[0]” comes before column “class_Arr[1]” in the input data table
and therefore the resulting combined strings will be “class_Arr[0]:class_Arr[1]”, that is:
“IRIS:<attribute>”, which is not exactly what we wanted. To change the substring order, we need

to change the column order in the input data table.

To change the columns’ order in the input data table, we use a “Column Resorter” node located
in “Manipulation” → “Column” → “Transform”.

Column Resorter

The “Column Resorter” node changes the order of the columns in the input data table.

The list of input columns with their order (left-to-right becomes top-to-bottom) is presented in

the configuration window.

• To move one column up or down, select the column in the list and click button “Up” or
“Down”.

Chapter 3: My First Data Exploration

79

• To make one column the first of the list, select the column and click “Move First”. Same
procedure to make one column the last of the list with button “Move Last”.

• To use an alphabetical order on the column names, click button “A-Z” for descending order
and “Z-A” for ascending order.

We connected a “Column Resorter” node
to the output port of the “Case Converter”
node. We moved column “class_Arr[0]”
one position down in the configuration

window, that is after column

“class_Arr[1]”. After commenting the
“Column Resorter” node with “rearrange

column order for next node column

combiner”, we connected its output port
to the “Column Combiner” node. Now the
“Column Combiner” has the input
columns in the right order to get the final

strings structured as “<attribute>:IRIS”.

Note. The “Column Combiner” node is useful to build unique keys to identify data rows.

3.5. Type Conversion

In the previous section we went through the string

manipulation functionalities available in KNIME

Analytics Platform. Before moving to the database

section, I would like to spend a little time showing the

“Type Conversion” nodes.

In this book we will not work with data type Date&Time.

Excluding this data type, there are three basic type

conversion nodes: Number To String, String To

Number, and Double To Int. All these nodes are located

in the “Node Repository” panel in: “Manipulation” →

“Column” → “Convert & Replace”.

Figure 3.13. The configuration window of the Column Resorter

node.

Figure 3.14. Location of the Type Conversion

node in the Node Repository panel.

Chapter 3: My First Data Exploration

80

In order to show how these type conversion nodes work, we will pretend that we want to change

one of the data columns, for example “petal width”, from type Double to type String. We will use
a Number To String node for that.

Number to String

The Number To String node converts all cells of a column from type Double or Int to type String.

The configuration window requires:

• The names of the columns to be converted

to type String. These columns are listed in

the frame “Includes”. All other columns are
listed in the frame “Excludes”.

• To move from frame “Includes” to frame
“Excludes” and vice versa, double click the

column name or select the column and

then click on arrows in between the two

windows.

• The “Number to String” node is equivalent
to the function string() in the String

Manipulation node.

We inserted only the column “petal width” in the
frame “Include” to be converted from type Double to type String.

Now for demonstration’s sake, let’s suppose that we want to isolate the floating and the integer
part of column “petal width”. Since now column “petal width" is of type String, we will use a Cell

Splitter node with delimiter character “.”. We named this node “int(petal width)”. At this point
we have:

• The original String column “petal width”

• The first substring “petal width_Arr[0]” containing the integer part of “petal width” value

• The second substring “petal width_Arr[1]” containing the floating part of “petal width”
value

Figure 3.15. Configuration window of the Number to

String node.

Chapter 3: My First Data Exploration

81

To convert values in the opposite direction of the Number To String node, we find the String To

Number node. For demonstration’s sake, let’s reconvert “petal width” from a String type to a
Number type (Double, Long, or Int). In order to do that, we can use the String To Number node.

String to Number

The String To Number node converts all cells of a

column from type “String” to type “Double”, “Long” or
“Int”. The configuration window requires:

• The final column type: Double, Long, or Int

• The decimal separator and the thousands

separator (if any)

• The names of the columns to be converted to

the selected type. These columns are listed in

the frame “Includes”. All other columns are
listed in the frame “Excludes”.

• To move from frame “Includes” to frame
“Excludes” and vice versa, double click the
column name or select the column and then

click on arrows in between the two windows.

• The “String to Number” node is equivalent to
toInt(), toDouble(), toLong(), and similar

functions in the “String Manipulation” node.

Let’s still suppose, for the sake of nodes
demonstration, that we have converted the “petal
width” array columns to type Double, but that actually
we wanted to have them of type Int. Let’s ignore the
fact that it would be enough to change option “Type” in the configuration window of the “String
To Number” node and let’s experiment with a new node: the “Double To Int” node

Figure 3.16. Configuration dialog of the String to

Number node.

Chapter 3: My First Data Exploration

82

Double to Integer

The “Double To Int” node converts all cells of a
column from type “Double” to type “Int”. The
configuration window requires:

• The rounding type: round, floor, or ceil.

“round” is the standard rounding, “floor”
rounds up to the next smaller integer, “ceil”
rounds up to the next bigger integer.

• The selection of the columns to be converted

to type Integer. Selection can be set manually

or using wildcard or regex.

• For both selections: Columns to be

transformed into type Int are listed in frame

“Includes”. All other columns are listed in
frame “Excludes”.

To move from frame “Includes” to frame
“Excludes” and vice versa, double click the column
name or select the column and then click on

arrows in between the two windows.

Note. A node that covers many of the conversion operations listed in this section is the

“Column Auto Type Cast”. This node scans a column to automatically define its data type.
A quick scan is also possible, faster but riskier.

3.6. Database Operations

We have only shown the type conversion nodes to illustrate KNIME’s potentials. We did not
actually need these type conversions to prepare the data for the visualization part. The

functions in the String Manipulation node would have been sufficient. In the next workflow for

visualization, we will use indeed just the data produced by the String Manipulation node.

We need now to write the data table generated by the String Manipulation node into a database.

In the “Node Repository” panel there is a whole category called “DB” containing all nodes that
perform operations on databases.

Figure 3.17. Configuration window of the Double to

Integer node.

Chapter 3: My First Data Exploration

83

In order to access a database with KNIME Analytics

Platform we first establish a connection to the database

with a connector node and along that connection we use

a DB Writer or a DB Table Selector followed by a DB

Reader node to write or read the data table.

The connector nodes that KNIME provides to access

databases come with pre-loaded JDBC drivers. The

connector nodes cover the most commonly used and

most recent database versions, such as MySQL, SQLite,

Vertica, Hadoop Hive, H2, PostgreSQL, and more.

If the connector node for your database is not available,

you can always use a generic DB Connector node. Here

you will need to provide the driver file for your database.

If this is not already in the list of pre-loaded driver files,

you can always add it via the “File” → “Preferences” →

“Databases” page (see later on in this chapter).

For this example, workflow we use the SQLite database

(https://www.sqlite.org/). SQLite is a self-contained,

serverless, zero-configuration, transactional file-based

database which does not require authentication. This

makes it easy for the distribution of the workflows

associated with this book, since no installation and no

configuration of a separate database are required. The database is contained in the file named

“KBLBook.sqlite” in the KBLdata folder.

Just remember that a similar procedure, including authentication, with a similar sequence of

nodes should be followed when using other databases.

First, we establish the connection to the database and then along this connection we write the

data table to the database. For the first task – establishing the connection to a database – we

use a connector node. For the second task – writing the data table into the database – we use

the DB Writer node.

Under category “DB”/”Connector” you find a number of connector nodes to establish a
connection to a database. Some of those nodes are dedicated connectors, which means they

contain a pre-loaded JDBC driver file and present a customized User Interface. Only the “DB

Figure 3.18. "DB" category in the Node

Repository.

Chapter 3: My First Data Exploration

84

Connector” node is a generic connector, to be used when the dedicated connector for the
database of choice is not available.

SQLite Connector

For the SQLite database, a dedicated connector node is

available: the SQLite Connector node. Its configuration

window just requires the path to the sqlite file and no

password. The JDBC driver for the SQLite database is already

pre-loaded.

In the configuration window of all connector nodes, there are

five tabs: “Connection Settings”, “JDBC Parameters”,
“Advanced”, “Input Type Mapping”, “Output Type Mapping”.

• “Connection Settings” contains all necessary settings to connect to the database: JDBC
driver, hostname, port, database name, and full credentials where required.

• Tabs “JDBC Parameters” and “Advanced” allow you to set specific commands to connect
to the database; while tabs “Input Type Mapping” and “Output Type Mapping” allow to
correctly map all data types from KNIME to the database and viceversa.

Figure 3.19. SQLite Connector node +

DB Writer node.

Figure 3.20. SQLite Connector node: "Connection Settings" tab in the

configuration window.

Chapter 3: My First Data Exploration

85

Note. Did you notice the full red square as input port? So far, we have seen only black

triangles as input or output ports. A black triangle means data. A full red square means a

database connection. An empty red square means an optional database connection. A full

brown square means an SQL statement. There are many different types of ports, each one

exporting or importing a different kind of object.

The SQLite database is a simple file-based database, requiring no credentials, which leads to a

very simple configuration window. Let’s check the configuration window of the connector node
to a more complex database: the MySQL Connector node.

MySQL Connector

The MySQL Connector node connects to a MySQL database and requires:

• The database driver (pre-loaded)

• The hostname and database name

• The username and password for the authentication

Credentials can be supplied as username and password by enabling the option “Username &
password”. Another option is to define them as credentials at the workflow level.

Figure 3.21. MySQL Connector node: "Connection Setting" tab.

Chapter 3: My First Data Exploration

86

The other tabs “JDBC Parameters”, “Advanced”, and “Mappings” include the same
functionalities as for the SQLite Connector node.

Credentials at the workflow level are automatically encrypted and therefore more secure.

Username and password provided directly into the configuration window are not automatically

encrypted and require an extra step for security: a master key. This master key will then be used

to encrypt usernames and passwords when provided into configuration windows.

DB Writer

The node “DB Writer”, located in the “DB”/”Read/Write” category, writes the input data table into
a database table. If the table does not exist, it is created. If the table already exists, column

names in the KNIME data have to match exactly the column names in the table. The only

required settings are:

• The name and optionally schema of the table in the database. The button “Select a table”
allows you to browse the database content.

• The size of the batch of data to write at each time

• The columns to transfer into the database from the KNIME data through an

Include/Exclude frame

• The flag for failure in case of error

• The flag to append the status of the writing operation for each data rows

• The flag “Remove existing table” allows to write in “Append” mode or in “Overwrite” mode

• The “Output Type Mapping” tab contains the specifications on the mapping of the KNIME
data types on the database data types.

In order to write the processed iris data to the KBLBook.sqlite database, a “DB Writer” node was
connected to the output port of the “String Manipulation” node named “build <attr>:IRIS”. In the
configuration window of the “DB Writer” node, we set the data columns that we want to transfer

from KNIME into the SQLite database.

Chapter 3: My First Data Exploration

87

Import a JDBC Database Driver

The JDBC drivers for the most common and recent databases are already pre-loaded and

available in the connector nodes. However, it might happen that the JDBC driver for a specific

database is not available. In this case, you need to upload the required database driver onto

KNIME Analytics Platform. Usually the JDBC driver file (*.jar) can be found in the database

installation or can be requested at the vendor’s site as an accessory to the database
installation. In order to load a database driver into KNIME, the driver file location must be

specified in the KNIME “Preferences” window.

In the Top Menu, select “Settings” (beside the information(i) button). The “Preferences” window
opens. The “Preferences” window sets the values for a number of general items, like “Help”,
“Plug-in”, “Java” and so on. All these items are grouped in the list on the left of the “Preferences”
window.

• Expand item “KNIME”

• Select sub-item “Databases”

The panel on the right displays the “Databases” settings.

In order to add a new database driver:

• Click the “Add File” or “Add directory” button

Figure 3.22. Configuration of the DB Writer node.

Chapter 3: My First Data Exploration

88

• Select the *.jar or

*.zip file that

contains the

JDBC database

driver

• The new JDBC

driver appears in

the “List of
loaded database

driver files and

directories” in the
center and

becomes

available for all

database nodes.

• We just

completed the

workflow “Write
To DB”, where we
read the Iris dataset and we performed a number of string manipulations and some type

conversions. The data table emerging from the string manipulation node has been written

into a SQLite database.

Let’s now read from the SQLite database the data we have just written, to perform some visual
data exploration. Next to the “DB Writer” node in the “Node Repository” panel, we find the “DB
Reader” node, which we will use to read the data from the database table created in the

previous workflow.

We create a new workflow “My First Data Exploration” and we establish the connection with
the database with a connector node (in this case a “SQLIte Connector” node), the select the
database table to read from with a DB Table Selector node, and then read the data with a “DB
Reader” node.

Figure 3.23. The "Database Driver" page under "Preferences".

Chapter 3: My First Data Exploration

89

DB Table Selector

The node “DB Table Selector”, located in “DB”/”Query”,
selects a table from the database provided with the

database connection at its input port. Configuration

settings require:

• The name and optionally schema of the

database table. The “Select a table” button
allows you to browse the content of the

database to select the desired table.

• The default query is “SELECT * FROM #table#” where #table# is the selected table, which
includes all data rows and all data columns of the table.

• It is also possible to extract a part or a transformation of the original #table#, by creating

a custom query. The query editor appears when the flag “Custom Query” is selected.

Figure 3.24. Workflow “Write To DB”.

Figure 3.25. SQLite Connector node + DB Table

Selector node + Database Reader node to read

data from an SQLite database.

Chapter 3: My First Data Exploration

90

• In the SQL editor (if available) you can then write your customized query to extract the

data from #table#

After the SQLite Connector node, the DB Table Selector node selects the table named KBLBook

inside the database using the default query. We will work on the data of this table from now on.

DB Reader

The node “DB Reader”, located in the “DB”/”Read/Write” category, reads a table from a
database according to the input SQL query and imports it into a workflow.

Since the “DB Reader” node receives all information (connection to the database and SQL
query) at the input port, it does not require any additional settings to run.

So, the only settings in the configuration window refer to the storage of the resulting data table.

The node reads all the columns from the table KBLBook in database KBLBook.sqlite:

Figure 3.26. Configuration of the Database Table Selector when following a

Database Connector node.

Chapter 3: My First Data Exploration

91

• 4 columns -- “sepal width”, “sepal length”, petal
width”, and “petal length” -- of data type

“Double” come directly from the Iris dataset

• 1 column -- “class” -- represents the iris class

and comes from the Iris dataset

• 1 column specifies the class number (“class 1”,
“class 2”, and “class 3”) and was introduced
earlier to show how the “Rule Engine” node
works

• The remaining 3 columns are substrings or

combination of substrings of the column

called “class”. They were introduced as examples of string manipulation operations.

3.7. Aggregations and Binning

As an example, let’s investigate the distribution of feature sepal_length across the whole data
set. We will approximate this distribution visually with a histogram. The histogram needs

ranges of values (bins) on which to count the number of occurrences. So, before proceeding

with the drawing of the histogram, we define such bins on sepal_length value range. To do that,

we use a “Numeric Binner” node.

We chose to build the histogram on the values of sepal_length only. We defined 9 bin intervals:

“< 0”, “[0,1[“, “[1,2[“, “[2,3[“, “[3,4[“, “[4,5[“, “[5,6[“, “[6,7[“, and “>= 7”. A square bracket
at the outside of the interval means that the delimiting point does not belong to the interval. We

also decided to create a new column for the binned values. The column containing the bins

was named “sepal_length_binned”.

We now want to count the number of iris plants for each species and with the “sepal_length”
measure falling in one of the bins; that is, we want to count the number of iris plants by

“sepal_length_binned” and by “class”.

In KNIME we can produce an aggregation of values based on groups and we can report the

final aggregation values on tables with different structures by using two different nodes: the

GroupBy node and the Pivoting node. Both nodes (“GroupBy” and “Pivoting”) are located in the

“Node Repository” panel in the “Manipulation” → “Row” → “Transform" category.

Figure 3.27. Configuration window of the DB

Reader node.

Chapter 3: My First Data Exploration

92

Both nodes are quite important in the KNIME node landscape, since they are quite flexible and

allow for a number of different aggregation operations, from simple row counting to the

calculation of statistical measures, from correlation to value concatenation.

Both nodes group the input data according to the values in some selected columns and on the

defined groups calculate a number of aggregation measures. The only difference is in the

shape of the aggregated output data table. In the results of the “GroupBy” node each

aggregation group is identified by the values in the first columns, while the final column

contains the aggregated measure relative to that group. In the resulting table of the “Pivoting”
node, each cell contains the aggregation measure for the group identified by the values in its

column header and in its RowID. Given the importance of both nodes, we used both of them.

We set “sepal_length_binned” and “class” to identify the different group and we used “count”
as aggregation measure on “sepal_length” column. “count” counts the rows in the defined
group, that is for all irises in “class” iris-virginica with “sepal_length” between 6 and 7.

Numeric Binner

The “Numeric Binner” node - located in the “Node Repository” panel in “Manipulation” →

”Column” → “Binning” category - defines a series of intervals (i.e. bins) and assigns each

column value to its bin.

The configuration window requires the following:

• The numerical column to be binned

• The list of bin intervals

• A flag to indicate whether the binned values should appear in a new column or replace the

original column

To define a new bin interval:

• Click the “Add” button

• Customize the bin range in the Bin Editor

To edit an existing bin interval:

• Select the bin interval in the list of bin intervals

• Customize the bin range in the Bin Editor

Chapter 3: My First Data Exploration

93

• You can build a new bin representation by selecting another column and repeating the

binning procedure.

Note. The Aggregation method “count” just counts the rows in the group. It makes no
difference which column it uses to count the rows, if we do not exclude those with missing

values. However, this is the only aggregation method with this particularity. All other

methods, such as average or sum or standard deviation, will of course produce different

results when applied to different columns.

GroupBy

“Groups” Tab

The “GroupBy” node finds groups of data rows by using the combination of values in one or
more columns (Group Columns); it subsequently aggregates the values in other columns

(Aggregation Columns) across those groups. Column values can be aggregated in the form of

a sum, a mean, just a count of occurrences, or using other aggregation methods (Aggregation

Method).

Bin Editor

Figure 3.28. Configuration window for the Numeric Binner node.

Chapter 3: My First Data Exploration

94

The configuration window of the “GroupBy” node consists of a number of tabs. Here we check
the tab named “Groups”. Tab “Groups” defines the grouping options. That is, it selects the group
column(s) by means of an “Exclude”/”Include” frame:

• The still available columns for grouping are listed in the frame “Available column(s)”. The
selected columns are listed in the frame “Group column(s)”.

• To move from frame “Available column(s)” to frame “Group column(s)” and vice versa,
use the “add” and “remove” buttons. To move all columns to one frame or the other use
the “add all” and “remove all” buttons.

The lower part of the configuration window

• sets the name of the new column

• keeps the row order or resorts them in alphabetical order

• rejects columns with too many different distinct values (default 10000), therefore

generating too many different distinct groups

• option “Enable hilting” refers to a feature available in the old “Data Views” node.

Figure 3.29. Configuration window for the GroupBy node: the "Groups" tab.

Chapter 3: My First Data Exploration

95

“Aggregation” Tabs

The remaining tabs in the configuration window define the aggregation settings, that is:

• The aggregation column(s)

• The aggregation method (one for each aggregation column)

The different tabs select the columns on which to perform the aggregation using different

criteria:

• Manually, one by one, by clicking on add button or clicking on add all button to select all

the columns for aggregation

• Based on a regex or wildcard pattern: all columns with name matching the pattern will be

used for aggregation

• Based on column type: all columns of the selected type will be used for aggregation

Several aggregation methods are available in all aggregation tabs. All available aggregation

methods are described in detail in the “Description” tab.

Figure 3.30. Configuration window for the GroupBy node: the "Manual Aggregation"

tab.

Chapter 3: My First Data Exploration

96

Aggregation methods differ for numerical columns (including here statistical measures, like

mean, variance, skewness, median, etc.) and for String columns (including unique count for

example).

Notice that aggregation methods “Count” and “Percent” just count the number of data rows for
a group and its percent value with respect to the whole data set. That means that whichever

aggregation column is associated with these two aggregation methods, the results will not

change, since counting data rows of one group and its percentage does not depend on the

aggregation column but only on the data group.

Aggregation methods “First” and “Last” respectively extracts the first and last data row of the
current group.

The most frequently used aggregation methods for numerical columns are: Maximum,

Minimum, Mean, Sum, Variance, and Sum. The most frequently used aggregation methods for

nominal columns are: Concatenate, [Unique] List, and Unique Count.

Pivoting

The “Pivoting” node finds groups of data rows by using the combination of values from two or
more columns: the “Pivot” columns and the “Group” columns. It subsequently aggregates the
values from a third group of columns (Aggregation Columns) across those groups. Column

values can be aggregated in the form of a sum, a mean, just a count of occurrences, or a

number of other aggregation methods (Aggregation Methods).

Once the aggregation has been performed, the data rows are reorganized in a matrix with

“Pivot” column values as column headers and “Group” column values in the first columns.

The “Pivoting” node has one input port and three output ports:

• The input port receives the data

• The first output port produces the pivot table

• The second output port produces the totals by group column

• The third output port presents the totals by pivot column

The “Pivoting” node is configured by means of three tabs: “Groups”, “Pivots”, and “Manual

Aggregation”.

Tab “Groups” defines the group columns by means of an “Exclude”/”Include” frame:

Chapter 3: My First Data Exploration

97

• The still available columns for grouping are listed in the frame “Available column(s)”. The
selected columns are listed in the frame “Group column(s)”.

• To move from frame “Available column(s)” to frame “Group column(s)” and vice versa,
use the “add” and “remove” buttons. To move all columns to one frame or the other use
the “add all” and “remove all” buttons.

The lower part of the configuration window

• sets the name of the new column

• keeps the row order or resorts them in alphabetical order

• rejects columns with too many different distinct values (default 10000), therefore

generating too many different distinct groups

• option “Enable hiliting” refers to a feature available in the old “Data Views” nodes

Tab “Pivots” defines the Pivot columns by means of an “Exclude”/”Include” frame:

• The still available columns for grouping are listed in the frame “Available column(s)”. The
selected columns are listed in the frame “Group column(s)”.

Figure 3.31. Configuration window of the Pivoting node: the "Groups" tab.

Chapter 3: My First Data Exploration

98

• To move from frame “Available column(s)” to frame “Pivot column(s)” and vice versa, use
the “add” and “remove” buttons. To move all columns to one frame or the other use the
“add all” and “remove all” buttons.

At the end of this tab window there are three flags:

• “Ignore missing values” ignores missing values while grouping the data rows

• “Append overall totals” appends the overall total in the output table “Pivot totals”

• “Ignore domain” groups data rows on the basis of the real values of the group and pivot
cells and not on the basis of the data domain. This might turn out useful when there is a

discrepancy between the real data values and their domain values (for example after

using a node for string manipulation).

Tab “Manual Aggregation” selects the aggregation columns and the aggregation method for
each aggregation column. The column selection is again performed by means of clicking on

the arrow buttons between the two windows.

For each selected aggregation column, you need to choose an aggregation method. Several

aggregation methods are available. They are all described in the “Description” tab.

Figure 3.32. Configuration window of the Pivoting node: the "Pivots" tab.

Chapter 3: My First Data Exploration

99

Aggregation methods “Count” and “Percent” just count the number of data rows in a group and
therefore they are independent of the associated aggregation column.

Once the aggregation has been performed, the data rows are reorganized in the pivot table as

follows:

• Column headers = <pivot columns distinct values> + <aggregation variable name selected

criterion>

• First columns = distinct values in the group columns

3.8. Nodes for Data Visualization

Let’s move now into the data exploration and data visualization part through the graphic
functionalities of KNIME Analytics Platform. For historical reasons, there are three possible

ways to graphically represent data in KNIME: Data Views nodes, JFreeChart based nodes, and

JavaScript based view nodes.

Data Views nodes are the newest nodes in KNIME Analytics Platform 5. They are located in the

category “Views” in the “Node Repository”. These nodes get a data table as input and produce

Figure 3.33. Configuration window of the Pivoting node: the "Manual Aggregation" tab.

Chapter 3: My First Data Exploration

100

a temporary graphical representation of the data, i.e., a view. Only the new visualization nodes

are compatible with the new reporting framework.

JFreeChart nodes are located under “Views”/”JFreeChart” category in the “Node Repository”.
These nodes are based on the Java JFreeChart graphical libraries. They are similar in contents

and tasks to the Data Views nodes, but they produce a static image rather than a temporary

view of the data graphical representation. The static image is exported into the KNIME

workflow and can be used later on for reports, but not for interactive exploration of the data

structure.

KNIME Analytics Platform also consists of the JavaScript based nodes. These nodes, located

in “Views”/”JavaScript”, are based on JavaScript graphical libraries. These nodes produce a

data table and a static image. The output data table is a copy of the input data table plus a

column containing the selection flag for each data point. The output image is a screenshot of

the node graphical view. It can be exported into the workflow for reporting using BIRT, but not

with the new reporting framework.

Scatter Plot

Let’s start our data exploration with a classic scatter plot. The node to use here is the “Scatter
Plot” node.

The “Scatter Plot” node plots each data row as a dot by using two of its attributes as
coordinates on the X-axis and the Y-axis. After reading the iris data set from the KBLBook.sqlite

database, we want to produce a scatter plot of petal length vs. petal width, which is the view

where the three groups of iris flowers are best recognizable.

The configuration window of a “Scatter Plot” node covers 5 sections: “Data”, “Plot”, “Reference
Lines”, “Interactivity”, and “Image Generation”. The “Data” section defines columns to report to
the x- and y-axis, columns to report on “color dimension”, and the maximum number of data
rows to be visualized. The “Plot” section specifies the image options, such as the title, the axes
limits, the choice of selecting axes scales, and the axes labels. The “Reference Lines” section
allows to plot a reference line at a specific value on the y-axis. This section allows to change

the line's label, border style, color, and size. The “Interactivity” section defines the allowed
interactivity on the final view, such as the possibility of downloading the image, zooming,

information display on hovering, and selection of points. The “Image Generation” section is a
checkbox to reproduce a view into an image at the output port.

Chapter 3: My First Data Exploration

101

After execution, the node produces an interactive view. Right-click the node and select

“Interactive View: Scatter Plot”. The level of interactivity of this view was decided in the settings
of the “Interactivity” section of the node configuration window. Let’s explore this view and let’s
see the kind of interactivity it allows.

The view of the “Scatter Plot” node opens using the settings of the configuration window. In
our case, opens on petal length vs. petal width, with such axis label, no title, wheel zooming,

and simple and rectangular selection enabled.

Figure 3.34. Configuration window of the Scatter Plot node

Chapter 3: My First Data Exploration

102

Scatter Plot: Interactive View

This is the view of the Scatter Plot node, where you can see the dots of the scatter plot. There

are five buttons in the upper right corner. Those are the interactivity buttons. There are five

buttons in the upper right corner. Those are the interactivity buttons. Starting from the far left,

the “Save Image” button lets you download the image locally. The second button, the “Zoom”
button, zooms in when you click on a specific point in the plot. The third button, the “Zoom
reset” button, resets the zoomed-in part to the default view. The fourth button from the right,

“Box select”, allows a box-shaped selection on the plot. The fifth button is the “Lasso select”
button, which allows us to select specific parts in a freeform. Additionally, scrolling back and

forth on the plot in the interactive view lets you zoom in and out.

Note. The flag “create image at output port” in the “Options” tab might slow down the node
execution if the image is built on a larger number of input records. In this case, you might

consider disabling this flag in the interest of speed execution.

Figure 3.35. The Interactive View of the Scatter Plot node.

Chapter 3: My First Data Exploration

103

Graphical Properties

Graphical plots in node views can be customized

with color, shape, and size of the plot’s markers.
KNIME Analytics Platform has three nodes, in

“Views” → “Property” in the “Node Repository” panel,
to customize plot appearance: “Color Manager”,
“Size Manager”, and “Shape Manager”. These nodes
take a data table as input and produce two objects

at two separate output ports.

• The first output port contains the same data table from the input port, with the additional

graphical properties as color, size, and/or shape assigned to each data row.

• The second output port contains the graphical model; that is the color, shape, or size

adopted for each record. This graphical model can be passed on to the “Size Appender”
node and then can be applied to another data set.

Let’s have a look at the Color Manager node as an example of how these graphical property

nodes work.

Figure 3.36. "true" and "false" values in the additional column named "Selected Scatter Plot" and produced by the

Scatter Plot node. "true" is associated to all selected records. "false" indicates a not selected records and it is the

default value.

Figure 3.37. The three views properties nodes, to

set color, shape, and size of plot markers.

Chapter 3: My First Data Exploration

104

Color Manager

The “Color Manager” node assigns a color to each row of a data table depending on its value
in a given column.

If a nominal column is selected in the configuration dialog, colors are assigned to each one of

the nominal values.

If a numerical column is selected, a color heat map spans the column numerical range.

The configuration window requires:

• The column from which to extract values (nominal columns) or ranges (numerical

columns)

• The color map for each list of values or range of values

• A default color map is assigned by default to the list / range of values. This can be

changed by selecting the value / range and then assigning a different color from the color

map displayed in the lower part of the configuration window.

Similarly to the Color Manager

node, in the configuration window

of the Shape Manager node, shape

can be changed by clicking the

row with the desired column value

and assigning a shape from the

menu list on the right.

The Size Manager node on the

opposite uses a multiple of an

input numerical column to scale

the size of the plot markers. Its

configuration window then

requires the numerical column

and the factor to use for the

scaling operation.

Figure 3.38. Configuration window of the Color Manager node.

Chapter 3: My First Data Exploration

105

Note. As of KNIME Analytics Platform 5.2, the Size Manager node and the Shape Manager

node are supported by the visualization nodes.

This time, a Color Manager node was applied to the original iris data before feeding the scatter

plot node. In the configuration window we selected the “class” column for the marker
assignment, and we allocated different colors to each one of the three iris labels found in the

“class” column. The introduction of this graphical property transforms the scatter plot –

reported above in black and white – into the following scatter plot.

Line Plots and Parallel Coordinates

Another useful plot is the line plot, to draw time series and other evolving phenomena along

one dimension only. A line plot connects attribute values sequentially, i.e., following their order

in the input data table. The row sequence represents the X-axis, while the corresponding

attribute values are plotted on the Y-axis. Multiple lines, i.e., multiple columns, can be reported

in the plot.

Figure 3.39. The view of the Scatter Plot node with customized colors for plot dots.

Chapter 3: My First Data Exploration

106

A line plot is usually developed over time, i.e., the row sequence represents a time sequence.

This is not the case with the iris data set, where rows represent only different iris examples and

have no temporal relationship. Nevertheless, we are going to use this workflow to show how a

Line Plot node works.

Line Plot

The “Line Plot” node displays a line plot, using one column as X-axis and one or more column

values as Y-axis.

As for the previous new visualization nodes, the configuration window of the “Line Plot” node
has four sections: “Data”; “Plot” for the plot details and “Interactivity”; and “Image Generation”
for the generating the image at the output port.

The main difference is in the “Data” section, where an “Includes”/”Excludes” frame allows to
select the columns for the plot.

Figure 3.40. Configuration window of the Line Plot node: the "Options" tab.

Chapter 3: My First Data Exploration

107

The final view of the Line Plot node is shown in the following figure, where RowIDs are displayed

on the X-axis and iris measures are displayed on the Y-axis. We used here RowIDs for the X-

axis, but we could have used any other column for that. Whatever had been chosen to be

reported in the X-axis, the plot would have still drawn the column values in sequence, in order

of appearance in the input data table.

Note. As of KNIME Analytics Platform 5.2, the Line Plot node does allow interactivity.

Another interesting plot is the Parallel Coordinates plot. Parallel coordinate visualization plots

are useful to get an idea of pattern groups across columns. For example, for our iris data set,

we can see that one of the iris classes gets easily separated from the other two along the

coordinates “petal length” and “petal width”.

In the parallel coordinates plot, one column is one coordinate, i.e., one Y-axis. Multiple column

values can be visualized on multiple coordinates, that is on multiple Y-axis. The data disposition

along each axis can tell us some stories about the groups in the data set. The node that

produces a parallel coordinate plot is the Parallel Coordinates node.

Figure 3.41. Plot view of the Line Plot node.

Chapter 3: My First Data Exploration

108

Parallel Coordinates Plot

The “Parallel Coordinates” node displays the input data table in a parallel coordinates plot. A
parallel coordinates plot unfolds the column names along the X-axis and displays each column

value on a separated Y-axis. As a result a data point is mapped as a line connecting values

across attributes.

The configuration window of this node has four sections.

• “Data” section contains an “Excludes/Includes” frame to insert/remove more columns
(i.e. Y-axis) into/from the parallel coordinates plot. This section allows to decide the “color
dimension” and maximum number of data rows to be included.

• “Plot” section defines general settings for the plot like the title, value axis limits, line shape,

and line thickness.

• “Interactivity” section sets the interactivity level for the final view

• “Image Generation" section sets the option to generate the image at the output port.

• Line colors can come from a specific column containing the color as a graphical property

(that is the result of the “Extract Color” node) or just from the graphical property
associated to each row (flag “use color from spec”).

Figure 3.42. Configuration window of the Parallel Coordinates node.

Chapter 3: My First Data Exploration

109

Below is the view of the Parallel Coordinates node. As Y-axis we find: “sepal_length”,
“sepal_width”, “petal_length”, “petal_width”. Each iris plant is then described by the line
connecting its “sepal_length”, “sepal_width”, “petal_length”, and “petal_width” values. Line
colors are determined by the color associated to each data row – i.e., to each iris plant – by the

preceding Color Manager node.

Interactivity in the Parallel Coordinates node is also reduced with respect to, for example, the

Scatter Plot node.

Bar Charts and Histograms

Of all the plots that are available to visually investigate the structure of the data, we cannot

leave out the histogram. The histogram visualizes how often values in a given range (bin) are

encountered in the value series. This section briefly takes a look at histograms and bar charts.

Properly speaking, there is not a dedicated JavaScript based node to draw a histogram plot.

The histogram drawing functionality is hidden in the “Bar Chart” node.

Figure 3.43. View of the Parallel Coordinates plot, where the four Iris measures are displayed on the

four Y-axis. One line corresponds to one Iris plant.

Chapter 3: My First Data Exploration

110

We already binned the “sepal_length” attribute in 9 bins. Now each data row of the input data
table is assigned to a given bin according to the value of its “sepal_length” attribute. To build
the histogram of attribute “sepal_length”, it is enough to count the number of occurrences in

each “sepal_length_binned” interval with a “Pivoting” node.

Bar Chart

The “Bar Chart” node creates a generic bar chart. To do that, it needs:

• A category column, which in case of a histogram is the binned column

• An aggregation column and an aggregation method.

In the case of a histogram the aggregation method is “Occurrence Count. This just counts the
data rows falling in each bin and therefore does not require a specific aggregation column.

These settings are all defined in the sections “Data” of the configuration window. Two
additional tabs “Plot”, “Interactivity”, and “Image Generation” define respectively the plot

Figure 3.44. Configuration window of the Bar Char node: the "Options" tab, configured to draw a histogram.

Chapter 3: My First Data Exploration

111

graphical details, enabled interactive view controls, and the option to generate the image at the

output port. “Plot” section includes preferences for title, axis labels, plot orientation, legend,

and an option to show the bar values. “Interactivity” section enabling image download, option

to show tool tip when hovered on the chart, subscribing and publishing to selection views, and

enabling animation. The “Image Generation” section allows to generate the image at the output
port.

The “Bar Chart” node does not have an optional input port for a color map.

The “Histogram” view displays how many times the values of a given column occur in each

interval (bin). The final histogram view is shown below.

Note. The Bar Chart node does not sort the string categories on the X-axis. They are

displayed in occurrence order. If we want them to be sorted, like in our case of binning

intervals, a Sorter node needs to precede the Bar Chart node.

This histogram covers all instances of iris plants represented in the input data set. However,

let’s suppose we want to isolate and compare the same histogram for the three separate
classes: iris-setosa, iris-versicolor, and iris-virginica.

First, we need to separate the three groups and count the number of occurrences for each

group and for each bin in “sepal_length” (“Pivoting” node); finally, we need to draw the counts
into a bar chart (“Bar Chart” node with aggregation method “Average” on all three classes). The
configuration window of the Bar Chart node and consequent histogram view are reported

below.

The last node we would like to consider in this section is the “Table View” node. This node just
displays the input data in a table.

Chapter 3: My First Data Exploration

112

Table View

The “Table View” node displays the input data in a table. The configuration window consists of
three tabs:

• “Data” section defines the data selection, for example which columns to display

• “View” section contains the usual settings to change the title, adjust table pagination, and

an option to compact rows in the table view.

• “Interactivity” section contains the usual settings to determine the level of interactivity in

the produced view.

Figure 3.45. The view of the histogram of "septal_length" obtained with a Bar Chart node, using

"Occurence Count" as aggregation method.

Chapter 3: My First Data Exploration

113

• Depending on the settings in the “Interactivity” section, the rows in the table view present

a selection box on the left. In this way, it is possible to select only some of them. Selected

rows will exhibit the flag “true” in the “Selected JavaScript Table View” appended column
at the node output port.

This is where we finish our description of the nodes available in KNIME Analytics Platform for

data visualization. There are a few additional interesting visualization nodes, such as “Lift
Chart”, “Box Plot”, “ROC Curve”, “Pie Chart”, etc.

In particular, the “Generic JavaScript View” node allows for free JavaScript code. If you are a
JavaScript expert and/or you prefer to use some specific JavaScript libraries, this is the node

that allows to create arbitrarily complex JavaScript based graphics.

This is the final workflow “My First Data Exploration”.

Figure 3.46. Configuration window of the Table View node.

Chapter 3: My First Data Exploration

114

Figure 3.47. The final version of the workflow "My First Data Exploration".

Chapter 3: My First Data Exploration

115

3.9. Exercises

Exercise 1

Read file “yellow-small.data” from the Balloons dataset (you can find this file in the KBLdata
folder or you can download it from: https://archive.ics.uci.edu/ml/machine-learning-

databases/balloons/). This file has 5 columns: “Color”, “Size”, “Act”, “Age”, and “Inflated”.
Rename the columns accordingly. Add the following classification column and name it “class”:

IF Color = yellow AND Size = Small => class =inflated

ELSE class = not inflated

Add a final column called “Final sentence” that says:

“inflated is T”
OR

“not inflated is F”

where “inflated/not inflated” comes from the “class” column and “T/F” from the “Inflated”
column.

Solution to Exercise 1

There are two ways to proceed in this exercise.

1. With a series of dedicated String Manipulation and Rule Engine nodes

2. With one Rule Engine node and one String Manipulation node with its functions

Chapter 3: My First Data Exploration

116

Figure 3.48. Exercise 1: Workflow.

Figure 3.49. Exercise 1: The String Manipulation node

configuration (node commented with "same result as...").

Figure 3.50. Exercise 1: The Rule Engine node

configuration (node commented with “if YELLOW and
SMALL…”).

Chapter 3: My First Data Exploration

117

Exercise 2

This exercise is an extension of Exercise 1 above. Write the last data table of workflow Exercise

1 into a table called “Chapter3Exercise2” in the SQLite database “KBLBook.sqlite”, using the
SQLite Connector node and the Database Writer node.

Solution to Exercise 2

Figure 3.51. Exercise 2: Solution Workflow.

Figure 3.52. Exercise 2: Configuration window of the SQLite Connector

node.

Chapter 3: My First Data Exploration

118

Exercise 3

Read the adult.data file. From this data set display three plots:

• “Age” Histogram by sex on 10 age bins

• “Work class” Bar Chart as number of occurrences for each work class value

• “Age” vs. “hours per week” Scatter Plot

Build the histogram and the bar chart using a Bar Chart node and the scatter plot using a Scatter

Plot node. In the “age” vs. “hours per week” scatter plot, select all points with “age” = 90 and
extract them with a Row Filter node on column “Selected”(…)” = “true”.

How many 90-year old people are included in the data set?

Solution to Exercise 3

Scatter Plot “age” vs. “hours per week”:

In order to make sure that all records are plotted we need to change the default value of the

setting “Maximum Number of Rows” in the “options” tab of the configuration window of the
“Scatter Plot” node. We need to make sure that this number is bigger than the number of

records in the input data set. Plotting all records instead of only the default number will of

course require a longer execution time.

In “Views Control” tab we need to enable rectangular selection. We open the node view, enable
the selection button on the top right corner, and draw a rectangle around our 90-year old people

on right of the scatter plot (if “age” has been placed on the x-axis). Then we click button “Close”
in the lower right corner of the view and accept the changes.

A Row Filter node finally extracts the records with “Selected (…)” column = true. 43 points
representing 90-year old people have been selected.

Optionally, we colored the dots in blue for male records and in red for female records with a

“Color Manager” node.

Chapter 3: My First Data Exploration

119

Bar Chart on Number of Occurrences in each work class:

Here we used just a Bar Chart node counting number of occurrences on category “workclass”

Figure 3.53. Scatter Plot of "age" vs. "hours per week" for the adult dataset. 90-year-old people

have been selected.

Figure 3.54. Bar Chart of number of occurrences of "work class" values in the adult

data set.

Chapter 3: My First Data Exploration

120

Age Histogram for Males and Females:

First, we automatically build 10 age bins using the Auto-Binner node. Then we use a Pivoting

node to count the number of occurrences for men and women in the different age bins. Using

a String Manipulation node we change “[“ into “(“ for sorting purposes and then we sort the age
bins in ascending order. Finally, a Bar Chart node displays the 2 numbers side by side for

women and men. The side-to-side effect was obtained selecting “Grouped” as “Chart Type”
setting in the “General Plot Options” tab in the node configuration window.

Figure 3.55. Age Histogram for men and women from a Bar Chart node.

Chapter 3: My First Data Exploration

121

Figure 3.56. Exercise 3: Solution Workflow.

122

Chapter 4: My First Model

4.1. Introduction

We have finally reached the heart of the KNIME Analytics platform: data modeling. There are

two categories of nodes in the “Node Repository” panel fully dedicated to data modeling:
“Analytics” → “Statistics” and “Analytics” → “Mining”. The “Statistics” category contains nodes

to calculate statistical parameters and perform statistical tests. The “Mining” category

contains mainly machine learning algorithms, from Artificial Neural Networks to Bayesian

Classifiers, from clustering to Support Vector Machines, and more.

Data modeling consists of two phases: training the model on a set of data (the training dataset)

and applying the model to a set of new data (live data or a test dataset). Complying with these

two phases, data modelling algorithms in KNIME Analytics Platform are implemented with two

nodes: a “Learner” node to train the model and a “Predictor” node to apply the model. The
“Predictor” node takes on another name when we are dealing with unsupervised training
algorithms.

The “Learner” node reproduces the training or learning phase of the algorithm on a dedicated
training dataset. The “Predictor” node classifies new unknown data by using the model
produced by the “Learner” node. For example, “Mining” → “Bayes” category implements naïve
Bayesian classifiers. “Naïve Bayes Learner" node builds (learns) a set of Bayes rules on the
learning (or training) dataset and stores them in the model. The “Naïve Bayes Predictor” node
then reads the Bayes rules from the model and applies them to the incoming data.

All data modeling algorithms need a training dataset to build the model. Usually, after building

the model, it is useful to evaluate the model quality, just to make sure we are not believing

predictions produced by a poor-quality model. For evaluation purposes, a new data set, named

test dataset, is used. Of course, the test dataset has to contain different data from the training

dataset, to allow for the evaluation of the model capability to work properly onto unknown new

data. For evaluation purposes, then, all modelling algorithms need a test dataset as well.

In order to provide a training set and a test set for the algorithm, usually the original data set is

partitioned in two smaller data sets: the learning/training dataset and the test dataset. To

partition, reorganize, and re-unite datasets, we use nodes from the “Manipulation” → “Row” →

“Transform" category.

