
KNIME Advanced Luck

KNIME Textbooks

KNIME v5.2

case

SANKET JOSHIROSARIA SILIPO

Copyright © 2024 by KNIME Press

All rights reserved. This publication is protected by copyright, and permission must be obtained

from the publisher prior to any prohibited reproduction, storage in a retrieval system, or

transmission in any form or by any means, electronic, mechanical, photocopying, recording or

likewise.

This book has been updated for KNIME 5.2.

For information regarding permissions and sales, write to:

KNIME Press

Talacker 50

8001 Zurich

Switzerland

knimepress@knime.com

ISBN: 978-3-9523926-6-9

www.knime.com

mailto:knimepress@knime.com
http://www.knime.com/

Acknowledgements
We would like to thank a number of people for their help and encouragement in writing this

book.

In particular, we would like to thank Bernd Wiswedel for answering our endless questions about

calling external REST services from inside a workflow, Iris Adae for explaining the most

advanced features of the Date&Time nodes, Andisa Dewi for significantly contributing to the

Database Operations chapter, and Roberto Cadili and Elisabeth Richter for creating examples

for the latest extension: the Geospatial Analytics Extension.

Special thanks go to Peter Ohl for reviewing the book contents and making sure that they

comply with KNIME intended usage and to Heather Fyson for reviewing the book’s English

written style.

Finally, we would like to thank the whole KNIME Team for their support in publishing and

advertising this book.

iii

Table of Contents

CHAPTER 1: INTRODUCTION 1

1.1. PURPOSE AND STRUCTURE OF THIS BOOK 1

1.2. DATA AND WORKFLOWS FOR THIS BOOK 2

1.3. MEMORY USAGE IN KNIME ANALYTICS PLATFORM 4

CHAPTER 2: DATABASE OPERATIONS 6

2.1. DATABASE NODES 6

2.2. CONNECT TO A DATABASE: DB CONNECTOR NODES 7
DB CONNECTOR 7
REGISTER YOUR OWN JDBC DRIVER 8
EDIT DATABASE DRIVER SETTINGS WINDOW 9
CREDENTIALS WIDGET 11
SQLITE CONNECTOR 11

2.3. SELECT THE TABLE TO WORK ON: THE DB TABLE SELECTOR NODE 13
DB TABLE SELECTOR 13
DATABASE METADATA BROWSER 14

2.4. IN-DATABASE PROCESSING 15
DB ROW FILTER 15
DB COLUMN FILTER 17
DB QUERY 18

2.5. UTILITY NODES FOR DATABASES 19
DB SQL EXECUTOR 19
DB QUERY INJECTOR 20
DB QUERY EXTRACTOR 21

2.6. READING DATA RESULTING FROM A SQL QUERY 21
DB READER 21
TABLE CREATOR 23
PARAMETERIZED DB QUERY READER 23
DB QUERY READER 25

2.7. WRITING DATA RESULTING FROM A SQL QUERY 26

Table of Contents

iv

DB WRITER 26
DB CONNECTION TABLE WRITER 28

2.8. DATABASE UPDATE AND DELETE COMMANDS 28
DB DELETE (TABLE) 29
DB UPDATE 29

2.9. DATABASE TYPE MAPPING 30

2.10. BIG DATA PLATFORMS AND MONGODB 31

2.11. EXERCISES 33
EXERCISE 1 33
EXERCISE 2 34
EXERCISE 3 35

CHAPTER 3: ACCESSING INFORMATION FROM THE WEB 37

3.1. ACCESSING GOOGLE SHEETS 37
GOOGLE AUTHENTICATOR 38
GOOGLE SHEETS CONNECTOR 39
GOOGLE SHEETS READER 39
GOOGLE SHEETS APPENDER 41
GOOGLE SHEETS UPDATER 42
GOOGLE SHEETS WRITER 43

3.2. ACCESSING REST SERVICES 43
GET REQUEST: “CONFIGURATION SETTINGS” TAB 45
GET REQUEST: THE OTHER TABS 46
JSON PATH 47
JSON TO TABLE 48
POST REQUEST: “CONNECTION” TAB 50
POST REQUEST: “REQUEST BODY” TAB 51

3.3. EXERCISES 51
EXERCISE 1 51

CHAPTER 4: DATE&TIME MANIPULATION 53

4.1. THE DATE&TIME TYPE 53

4.2. HOW TO PRODUCE A DATE&TIME COLUMN 55
STRING TO DATE&TIME 55
DATE&TIME TO STRING 57

Table of Contents

v

CREATE DATE&TIME RANGE 58

4.3. REFINE DATE&TIME VALUES 60
MODIFY TIME 60
DATE&TIME SHIFT 61

4.4. ROW FILTERING BASED ON DATE&TIME CRITERIA 62
DATE&TIME-BASED ROW FILTER 62
EXTRACT DATE&TIME FIELDS 64
DATE&TIME DIFFERENCE 66

4.5. MOVING AVERAGE AND AGGREGATION 68
MOVING AVERAGE 70
MOVING AGGREGATION 71

4.6. TIME SERIES ANALYSIS 75
LAG COLUMN 75

4.7. EXERCISES 79
EXERCISE 1 79
EXERCISE 2 80
SOLUTION TO EXERCISE 2 81

CHAPTER 5: FLOW VARIABLES 83

5.1. WHAT IS A FLOW VARIABLE? 83

5.2. CREATING A FLOW VARIABLE 84
TRANSFORM A DATA VALUE INTO A FLOW VARIABLE 85
EXPORT A NODE CONFIGURATION AS A FLOW VARIABLE 87
CONFIGURATION & WIDGET NODES TO CREATE FLOW VARIABLES 89

5.3. FLOW VARIABLE VALUES AS NODE SETTINGS 90
THE “FLOW VARIABLE” BUTTON 91
THE “FLOW VARIABLES” TAB IN THE CONFIGURATION WINDOW 92
INJECT A FLOW VARIABLE THROUGH THE FLOW VARIABLE PORTS 94
MERGE VARIABLES 95

5.4. CONFIGURATIONS, WIDGETS, COMPONENTS 95

5.5. TRANSFORM A FLOW VARIABLE INTO A DATA VALUE 98
VARIABLE TO TABLE ROW 98

5.6. MODIFYING FLOW VARIABLE VALUES 99

5.7. MORE CONFIGURATION NODES AND WIDGET NODES 102
VALUE SELECTION WIDGET 103
LOCAL FILE BROWSER CONFIGURATION 104

Table of Contents

vi

5.8. COMPOSITE VIEW IN COMPONENTS 106
INTERACTIVE RANGE SLIDE FILTER WIDGET 108

5.9. COMPONENTS ARE FOR SHARING 111

5.10. EXERCISES 113
EXERCISE 1 113
EXERCISE 2 114
EXERCISE 3 115
EXERCISE 4 117

CHAPTER 6: ADVANCED DASHBOARDS WITH COMPOSITE VIEWS 119

6.1. A FEW EXAMPLES OF ADVANCED DASHBOARDS 119

6.2. INTERACTIVELY SELECTING ONE OR MORE ATTRIBUTES TO REPRESENT IN A CHART 123
COLUMN FILTER WIDGET 123

6.3. DYNAMICALLY UPDATE THE DASHBOARD 125
REFRESH BUTTON WIDGET 126

6.4. INTERACTIVELY SELECTING ROWS BY COLUMN VALUES 128
NOMINAL ROW FILTER WIDGET 128

6.5. TEXT AUTOCOMPLETION 132
AUTOCOMPLETE TEXT WIDGET 133

6.6. CUSTOM FILTERING 134
SINGLE SELECTION WIDGET 135

6.7. ANIMATING A VANILLA BAR CHART WITH COMMUNITY COMPONENTS 137
ANIMATED BAR CHART 138

6.8. GEOSPATIAL ANALYTICS EXTENSION 140
TASK 1: DISPLAY A PLACE ON A MAP 141
TASK 2: VISUALIZATION OF A COUNTRY ON A WORLD MAP 145

6.9. EXERCISES 148
EXERCISE 1 148
EXERCISE 2 151

CHAPTER 7: LOOPS 154

7.1. WHAT IS A LOOP 154

7.2. LOOP WITH A PRE-DEFINED NUMBER OF ITERATIONS 155
DATA GENERATOR 156

Table of Contents

vii

COUNTING LOOP START 160
LOOP END 160

7.3. DEDICATED COMMANDS FOR LOOP EXECUTION 163

7.4. APPENDING COLUMNS TO THE OUTPUT DATA TABLE 164
LOOP END (COLUMN APPEND) 165

7.5. LOOP ON A LIST OF COLUMNS 167
COLUMN LIST LOOP START 168

7.6. LOOP ON A LIST OF VALUES 172
TABLE ROW TO VARIABLE LOOP START 172
CACHE 174

7.7. LOOP ON DATA GROUPS AND DATA CHUNKS 176
GROUP LOOP START 176
CHUNK LOOP START 178
BREAKPOINT 181

7.8. KEEP LOOPING TILL A CONDITION IS VERIFIED 181
GENERIC LOOP START 182
VARIABLE CONDITION LOOP END 182

7.9. RECURSIVE LOOP 184
RECURSIVE LOOP START 184
RECURSIVE LOOP END 185

7.10. EXERCISES 186
EXERCISE 1 186
EXERCISE 2 189
EXERCISE 3 189
EXERCISE 4 191

CHAPTER 8: SWITCHES 194

8.1. INTRODUCTION TO SWITCHES 194

8.2. THE “IF SWITCH”- “END IF” SWITCH BLOCK 195
IF SWITCH 196
END IF 197
AUTO-BINNER 199

8.3. THE “JAVA IF (TABLE)” NODE 200
JAVA IF (TABLE) 201

8.4. THE CASE SWITCH BLOCK 202
CASE SWITCH START 203

Table of Contents

viii

CASE SWITCH END 204

8.5. TRANSFORMING AN EMPTY DATA TABLE RESULT INTO AN INACTIVE BRANCH 205
EMPTY TABLE SWITCH 206

8.6. EXERCISES 207
EXERCISE 1 207
EXERCISE 2 209

NODE & TOPIC INDEX 211

1

Chapter 1: Introduction

1.1. Purpose and Structure of this Book

KNIME Analytics Platform is a powerful tool for data analytics and data visualization. It

provides a complete environment for data analysis which is fairly simple and intuitive to use.

This, coupled with the fact that KNIME Analytics Platform is open source, has led a large

number of professionals to use it. In addition, third-party software vendors develop KNIME

extensions in order to integrate their tools into it. KNIME nodes are now available that reach

beyond customer relationship management and business intelligence, extending into the field

of finance, life sciences, biotechnology, pharmaceutical, and chemical industries. Thus, the

archetypal KNIME user is no longer necessarily a data science expert, although his/her goal is

still the same: to understand data and to extract useful information.

This book was written with the intention of building upon the reader’s first experience with

KNIME software. It expands on the topics that were covered in the first KNIME user guide

(“KNIME Beginner’s Luck”) and introduces more advanced functionalities. In the first guide1,

we described the basic principles of KNIME Analytics Platform and showed how to use it. We

demonstrated how to build a basic workflow to manipulate, visualize, and model data, and how

to build reports. Here, we complete these descriptions by introducing the reader to more

advanced concepts. A summary of the chapters provides you with a short overview of the

contents to follow.

Chapter 2 describes the nodes needed to connect to a database, import data, build an

appropriate SQL query to select a subset of the data or for some required processing, and

finally to write data back into the database. Accessing a database, importing data, and building

SQL queries are the basic operations necessary for any, even very simple, data warehousing

strategy.

Of course, the largest source of data is nowadays the Internet. Chapter 3 is dedicated to

alternative ways of getting data besides files and databases, i.e. web data sources. Chapter 3

starts with the connectors to Google Sheets and continues with access to REST services.

Those are definitely powerful tools to search for data elsewhere.

1 Silipo R., Joshi S.; “KNIME Beginner’s Luck”, KNIME Press (2023) (https://www.knime.com/knimepress/beginners-

luck)

https://www.knime.com/knimepress/beginners-luck
https://www.knime.com/knime-analytics-platform
https://www.knime.com/knimepress/beginners-luck
https://www.knime.com/knimepress/beginners-luck

Chapter 1: Introduction

2

Chapter 4 introduces the Date&Time object and the nodes to turn a String column into a

Date&Time column, to format it, to extract a time difference, and in general to perform

date/time based operations. The Date&Time object provides the basis for working with time

series. The last section of chapter 4 briefly describes a few nodes dedicated to time series

analysis.

A very important concept for the KNIME workflows is the concept of “flow variables”. Flow

variables enable external parameters to be introduced into a workflow to control its execution.

Chapter 5 describes what a flow variable is, how to create it, and how to edit it inside the

workflow, if needed. Capitalizing on the concept of flow variables, we introduce the

components and explain how to make them configurable via Configuration nodes and Widget

nodes.

Widget nodes especially can be helpful in the creation of dashboards, reports, and data apps.

Chapter 6 shows how to build a rich dashboard through the composite view of an advanced

component.

Most data operations in KNIME Analytics Platform are executed on a data matrix, named data

table. This means that an operation is executed on all data rows. This is a big advantage in

terms of speed and programming compactness. However, from time to time, a workflow also

needs to run its rows, one after the other, through an operation. That is, sometimes it needs a

real loop. Chapter 7 introduces a few nodes that implement loops: from a simple “for” cycle to

more complex loops, such as looping on a list of values or feeding the current iteration results

into the next iteration.

Chapter 8 illustrates the use of logical switches to change the workflow path upon compliance

with some predefined condition.

In this introductory chapter, we list the data and the example workflows that have been built for

this book and note the KNIME Extensions required to run some of the example workflows.

1.2. Data and Workflows for this Book

This book builds a few examples and provides the solutions to the exercises. The workflows

are accessible via the KNIME Community Hub and are stored in the KNIME Press space – look

for the respective book and KNIME version. To download material from the KNIME Community

Hub, you need to be logged in with your KNIME account (see how to create a KNIME account),

the same as for the KNIME Forum. After entering the KNIME Community Hub, in order to

download the workflows, just click on the cloud icon. Download the whole folder onto your

https://hub.knime.com/-/spaces/-/~S1gxBH6QhOGE2YfR/
https://www.knime.com/user/register
https://forum.knime.com/

Chapter 1: Introduction

3

machine from the KNIME Advanced Luck space, which will result in a .knar file. Then double

click it OR import it into the KNIME Explorer via “Import workflow”.

At the end of the import operation, in the Space Explorer panel, you should find a KNIME

Advanced Luck v5.2 – Exercises folder containing Chapter2, Chapter3, Chapter4, Chapter5,

Chapter6, Chapter7, and Chapter8 subfolders, each one with workflows and exercises to be

implemented in the next chapters. You should also find a KALdata folder containing the

required data.

The data used for the exercises and for the demonstrative workflows of this book were either

generated by the authors or downloaded from the UCI Machine Learning Repository2, a public

data repository (http://archive.ics.uci.edu/ml/datasets). If the data set belongs to the UCI

Repository, a full link is provided here to download it. Data generated by the author, that is not

public data, are located only in the KALdata folder.

Data sets from the UCI Machine Learning Repository2:

• Automobile: http://archive.ics.uci.edu/ml/datasets/Automobile

• Slump_test: http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test

This book is not meant as an exhaustive reference for KNIME Analytics Platform, although

many useful workflows and aspects of it are demonstrated through worked examples. This text

is intended to give you the confidence to use the advanced functions in KNIME Analytics

Platform to manage and analyze your own data.

2 Frank A. and Asuncion A., “UCI Machine Learning Repository”, Irvine, CA: University of California, School of

Information and Computer Science (2010) (https://archive.ics.uci.edu/datasets)

Figure 1.1. Workflows and data for this book on the KNIME Community Hub.

https://hub.knime.com/knime/spaces/KNIME%20Press/KNIME%20Advanced%20Luck~CL6fXg-cNjvBbHDP/
http://archive.ics.uci.edu/ml/datasets
http://archive.ics.uci.edu/ml/datasets/Automobile
http://archive.ics.uci.edu/ml/datasets/Concrete+Slump+Test
https://archive.ics.uci.edu/datasets

Chapter 1: Introduction

4

1.3. Memory Usage in KNIME Analytics Platform

When installing KNIME Analytics

Platform via the Windows installer, it

suggests suitable memory settings at

installation time. However, in all other

installation procedures, or if you want

to change the set number of MB later,

you will need to set yourself the

maximum amount of memory

available to KNIME Analytics

Platform.

The amount of memory available to

KNIME Analytics Platform is stored in

the knime.ini file. The knime.ini file is

located in the directory in which

KNIME Analytics Platform has been

installed, together with the knime.exe

file. The knime.ini file contains a number of required settings.

-Xmx<size> is the setting that defines the maximum

heap size available to run workflows. You can define this

value by editing the knime.ini file or at installation time.

If you run into memory problems, you probably need to

manually increase the heap space (-Xmx option) directly in the knime.ini file to a size

compatible with the memory you have on your machine (like 4G for 4 Gigabytes).

Figure 1.2. Specifying the Memory Setting on install when using the

Windows installer.

Figure 1.3. The "knime.ini" file.

Figure 1.4. The bottom right corner shows

the heap status.

Chapter 1: Introduction

5

There is also an easy way to monitor how much heap space is being used by a workflow and if

this reaches the maximum limit assigned by the –Xmx option. From within KNIME Analytics

Platform

• Access the “Preferences” in the upper right corner

• In the “Preferences” window, select “General” and enable the “Show heap status” option;

Click “Apply and Close”

• Now you can see a number showing the heap status in the lower right corner of the KNIME

Workbench

To run the example workflows and the exercises provided in this book, you will need to install

the whole “KNIME & Extensions” group. In order to install a KNIME Extension:

• In the top-right corner of the screen, select “Menu” option -> “Install Extensions”

• In the “Install” window:

o Make sure “Group items by

category” is checked

o Open the group containing

your extension, like for

example “KNIME &

Extensions” group

o If you do not know where

your extension package is

located, just run a search by

inserting a few related

keywords in the top textbox

o Select your extension

o Click “Next” and follow

installation instructions
Figure 1.5. The "Preferences" window with the "Show heap status"

option.

6

Chapter 2: Database Operations

2.1. Database Nodes

We proceed with the exploration of the advanced features of KNIME Analytics Platform by

having a look into the database operations. A first glance was already provided in the first book

of this series, “KNIME Beginner’s Luck”1. Here, though, we investigate the multiple possibilities

for connecting, reading, writing, and selecting data from and to a database in much greater

detail.

For KNIME Analytics Platform 4.0, a full rewrite of the Database support was performed. The

old Database nodes are now marked as “Legacy”; the new nodes reside in the DB category in

the Node Repository, where you can find a number of nodes for database access, manipulation,

and writing.

First of all, we want to create the workflow group “Chapter2”, to host all workflows for this

chapter. Then, in this new workflow group, we want to create an empty workflow with the name

“Database_Operations”. The goal of this workflow is to show how to connect to a database,

retrieve data from the database, and write data into the database.

In the newly created workflow named “Database_Operations”, we read the data from the “sales”

table in the “KCBBook.sqlite” database. SQLite is a file-based database software. Since it

requires neither server nor authentication, it is suitable to show the KNIME database nodes

without the hassle of setting up a full-blown database. In SQLite the only thing you need is the

path to the file containing the database, “KCBBook.sqlite” in this case and available in folder

KALdata. The “sales” table inside the database contains the sale records for a fictitious

company. Such records consist of:

• The name of the product (product)

• The sale country (country)

• The sale date (date)

• The quantity of products sold (quantity)

• The amount of money (amount) generated by the sale

• A flag to indicate whether the purchase was paid by cash or credit card (card)

The sales for four products are recorded: “prod_1”, “prod_2”, “prod_3”, and “prod_4”. However,

“prod_4” has been discontinued and is not significant for the upcoming analysis. In addition,

http://www.knime.org/knimepress/beginners-luck

Chapter 2: Database Operations

7

the last field called “card” contains only sparse values and we would like to exclude it from the

final data set.

To read data from a database into a KNIME workflow, we start with one node to establish the

connection to the database; then a node to select the table to work on; a few nodes, one after

the other, to build the SQL query to extract the required data set; and finally one last node to

run the SQL query on the database and import the results into the KNIME workflow. There are

many ways to build a SQL query, each one fitting a given level of SQL expertise.

2.2. Connect to a Database: DB Connector Nodes

The first step is to just establish a connection to a database, nothing more, and to do that you

just need to know the specs of your database: server URL, credentials, JDBC driver. In the

DB/Connection category we find all connector nodes; that is those nodes that just connect to

a database. We find dedicated nodes for selected databases and one generic node to connect

to any database.

The generic connector node is named “DB Connector” and produces a database connection at

the output port, indicated with a red square port. It can connect to any database, as long as you

provide the correct JDBC driver. The JDBC driver is a file, usually provided by the database

software distributor, interfacing the SQL script with the database software.

If you have chosen an uncommon or a strictly licensed database, it is possible that the JDBC

driver you need is not part of the pre-loaded JDBC driver set. In this case, you need to upload

your own JDBC driver file onto KNIME Analytics Platform via the “Preferences” window.

Note. The Oracle JDBC driver for example is not available in the set of pre-loaded JDBC

drivers, due to Oracle’s licensing restriction. If you want to connect to an Oracle database

via the “DB Connector” node or even the dedicated “Oracle Connector” node, you need to

register the Oracle JDBC driver first in the Preferences window.

DB Connector

The “DB Connector” node just establishes a connection to a database, i.e. it can connect to

arbitrary JDBC compliant databases. To do that, the following most important node settings

are required:

• Database Type. Select the type of database the node will connect to. For example, if the

database is a PostgreSQL derivative select Postgres as database type. If you don’t know

the type select the default type.

Chapter 2: Database Operations

8

• Database Dialect. Select the database dialect.

• Driver Name. Select the appropriate driver for your specific database. JDBC drivers for

most commonly used databases have been pre-loaded in the node. If there is no matching

JDBC driver it first needs to be registered, as described in “Register your own JDBC driver”

later in this book. Only JDBC drivers that have been registered for that database type, will

be available for selection.

• Database URL. A driver-specific JDBC URL is required. Please consult the vendor

documentation for the URL representation according to the JDBC driver you are using.

• Authentication. Login credentials – when required - can either be provided via credential

flow variables, or directly in the configuration dialog in the form of username and

password. Kerberos authentication is also provided for databases that support this

feature, e.g., Hive or Impala.

Register your own JDBC Driver

In the top menu:

Figure 2.1. Configuration window of the DB Connector node.

Chapter 2: Database Operations

9

• Click “Open preferences” icon at the top-right corner of the screen

• In the “Preferences” window:

o In the left frame: Open “KNIME” -> Select “Databases”

o In the right frame: Click button “Add” and a new database driver settings window will

open where you can provide all necessary information about the JDBC driver. Load

the database driver file. After that, the driver will appear in the list of database drivers.

Click “Apply and Close” to apply the changes.

Edit Database Driver Settings Window

Clicking “Add” in the previous window opens a new database driver window where you can

provide the JDBC driver path and all necessary information, such as:

• ID. The unique ID of the JDBC driver consisting only of alphanumeric characters and

underscore.

• Name. The unique name of the JDBC driver.

• Database type. If your database is not on the list, you can choose “default”.

Figure 2.2. Register a JDBC driver file in KNIME Preferences.

Chapter 2: Database Operations

10

• Description. Optional description of the JDBC driver.

• URL template. The JDBC driver connection URL format. Please consult your database

vendor to find the appropriate format.

• Classpath. The path to the JDBC driver. Click “Add file” if the driver is provided as a single

.jar file, or “Add directory” if the driver is provided as a folder that contains several .jar

files. Some vendors offer a .zip file for download, which needs to be unpacked to a folder

first.

• Driver class. The JDBC driver class and version will be detected automatically by clicking

“Find driver classes”. Please select the appropriate class after clicking the button.

After filling in all the information, click “Ok”, and the newly added driver will appear in the list of

database drivers.

After loading the JDBC database driver file in the “Preferences” window, the database driver

becomes a general KNIME feature and is available for all nodes in all workflows in all

workspaces.

Figure 2.3. Edit database driver settings.

Chapter 2: Database Operations

11

Credentials Widget

The Credentials Widget node is a KNIME node that allows you to create a

credentials input widget for use in component composite views. It provides

a user-friendly way for users to enter their credentials, such as usernames

and passwords, when running a workflow.

It outputs a credentials flow variable, which can be used with other nodes

that require authentication. It provides a secure way to enter the

credentials, which eventually enhances the security of the workflows.

SQLite Connector

The “SQLite Connector” node establishes the connection to an SQLite database (file) and

requires the following connection settings:

• Database Dialect. Choose the registered database dialect here.

• Driver Name. Select the registered database drive.

• Path. The path to the SQLite database file.

Figure 2.5. Configuration window of the Credentials Widget node

Figure 2.4. The

Credentials Widget

node.

Chapter 2: Database Operations

12

• In-memory. The in-memory SQLite database name. Use this option to create a temporary

database if the database supports this feature.

Note. The option Path accepts the knime:// protocol and therefore the relative path to the

workflow location, which enhances the workflow portability.

In the workflow “Database_Operations” we used an SQLite Connector node and a generic DB

Connector node to connect to the SQLite database file KCBBook.sqlite. In the DB Connector

node, we selected the SQLite driver and provided the path to the SQLite file in the node

configuration window. The configuration window of the SQLite Connector node is shown

above.

Note. Unlike in an “SQLite Connector” node, in a generic “DB Connector” node, the URL for

the sqlite file cannot use the knime:// protocol and the relative path. It needs the absolute

URL path of the database file, which might make things complicated when moving the

workflow into another environment.

As an example, for all dedicated connector nodes, we have shown the “SQLite Connector” node.

Other dedicated database connector nodes differ from this one in the specific settings required

by their database master.

Figure 2.6. Configuration window of the “SQLite Connector” node.

Chapter 2: Database Operations

13

2.3. Select the Table to work on: the DB Table Selector
Node

Once we have a connection to the database, we need to start working on the data. The next

step is to select the table to work on. This is the task for the “DB Table Selector” node. This

node transforms a database connection (red square input port) into a database SQL query

(brown square output port) to be executed later on the input database connection.

DB Table Selector

The “DB Table Selector” node takes a database connection at the input port and allows to select

a table, or a view, interactively based on the input database connection.

At the top part you can enter the schema and the table/view name that you want to select.

Pressing the “Select a table” button opens a “Database Metadata Browser” window (see below)

that lists available tables/views in the database.

In addition, ticking the “Custom Query” checkbox allows you to write your own custom SQL

query to narrow down the result. It accepts any SELECT statement, and the placeholder #table#

can be used to refer to the selected table. It also shows the “Database Metadata Browser” and

“Flow Variable List” panels on the left.

Figure 2.7. Configuration window of the DB Table Selector window

Chapter 2: Database Operations

14

Database Metadata Browser

The “Database Metadata Browser” window shows

the database schema, including all tables / views and

their corresponding columns and column data types.

At first opening, it fetches the metadata from the

database and caches it for subsequent use. By

clicking on an element (schema/table/view) it shows

the contained elements. To select an element, select

the name and click “OK” or double-click it.

The search box at the top of the window allows you

to search for any table or view inside the database.

At the bottom there is a refresh button to re-fetch the

schema list, including a time reference on how long

ago the schema was last refreshed.

Note that if you have just created a table and you

cannot find it in the schema list, it might be that the

metadata browser cache is not up to date, so please

try to refresh the list by clicking the refresh button in

the lower right corner.

This modular approach separating database connection

from table selection allows to process different database

tables with different SQL queries on different workflow

branches. It also allows to deal with special table selection

statements for the many different databases, big data

platforms, SQL dialects, and NoSQL scripts.

In the workflow “Database_Operations” we use the DB Table

Selector node after the SQLite Connector node to upload the

whole “sales” table using the default SQL query SELECT *

FROM #table#.

Figure 2.8. Database Metadata Browser.

Figure 2.9. Sequence of SQLite

Connector node and TB Table Selector

node.

Chapter 2: Database Operations

15

2.4. In-Database Processing

For the non-SQL savvy, KNIME Analytics Platform offers several database manipulation nodes.

These nodes implement SQL queries through a graphical user interface bypassing the whole

SQL script. They take a SQL query as input (brown square port) and produce a SQL query as

output, which consists of the input SQL query augmented with the SQL query implemented in

the node itself.

For example, using the DB Table Selector node to select the table “sales” simply loads the whole

dataset. However, what we really want to do is to get rid of the rows that pertain to product

“prod_4”, to keep only those with country “Germany”, and to get rid of the “card” column, before

we pull in the data set from the database.

The SQL query to perform those operations would be something like:

SELECT product, country, date, quantity, amount from sales WHERE product!=‘prod_4’

AND country = ‘Germany’

In order to implement the SQL query above, we just need a DB Row Filter, to filter out records

with “prod_4” and filter in records with country “Germany” and a “DB Column Filter” node to

remove the field named “card”.

The DB Row Filter node customizes a SQL query, according to a filtering criterion, to keep only

the matching data records. The filtering criterion consists of one or more conditions grouped

together in AND or OR mode. The configuration window of this node allows you to interactively

build the single conditions necessary to obtain the desired filtering criterion.

DB Row Filter

On the left side is a “Query View” panel. Here all implemented filtering conditions are listed.

On the right is the condition editor. At the bottom there are buttons to:

• Add Condition. Add a new condition to the list.

• Add Group. Group together two or more conditions via a logical operator (AND or OR).

Clicking the logical operator at the top of the group in the “Query View” panel allows to

select whether AND or OR or to delete tout court the group.

• Remove Group. Ungroup a set of conditions via their grouping logical operator.

• Delete. Delete the selected condition from the list.

Chapter 2: Database Operations

16

We connected a DB Row Filter node to the DB Table Selector node after the SQLite Connector

node. The DB Row Filter node was set to keep all rows where the column “product” was

different (operator “!=”) from the value “prod_4” and the column “country” was equal to

“Germany” (operator “=”).

After execution, if we look at the “Filtered DB Data” tab in the Node Monitor, we see no data

table, since the node produces a SQL query and no data. However, it is possible to see a

temporary preview of the results of the SQL query. Clicking the button “Fetch 100 data rows”

fetches the first 100 rows from the database according to the implemented query.

In the “Database_Operations” workflow, a DB Column Filter node was also introduced to follow

the DB Row Filter node and to remove column “card” from the dataset.

Figure 2.10. Configuration window of the DB Row Filter node.

Figure 2.11. Output of DB Row filter node

Chapter 2: Database Operations

17

DB Column Filter

Th DB Column Filter node customizes a SQL query to exclude or include some of the fields in

the original data table. Its configuration window is designed like the configuration window of a

“Column Filter” node. That is, it is based on an “Exclude/Include” framework.

• The columns to be kept are listed in the “Include” frame on the right

• The columns to be removed are listed in the “Exclude” frame on the left

To move single columns from the “Include” frame to the “Exclude” frame and vice versa, use

the “>” (add to Include) and “<” (remove from Include) buttons. To move all columns to one

frame or the other use the “>>” or “<<” buttons.

A “Filter” box in each frame allows searching for specific columns, in the event that an

excessive number of columns impedes the data column overview.

With an appropriate knowledge of the SQL syntax, it is possible to add some SQL free code to

any existing SQL query, with the node “DB Query”. This node takes a SQL statement as input,

adds the SQL query written in its configuration window, and exports the total SQL query at the

output port.

If you know your way around SQL, but you are not a SQL wizard, you can write smaller SQL

queries and pile them up using a sequence of “DB Query” nodes.

Figure 2.12. Configuration window of DB Column filter node

Chapter 2: Database Operations

18

Let’s now build the same SQL query, the one built before with the DB Row Filter node, using a

DB Query node. The “DB Query” node has the task of adding SQL instructions to the SQL query

at its input port.

DB Query

On the right, the SQL Statement editor allows to insert the new SQL instruction.

The “Database Metadata Browser” window on the left allows you to browse the database

metadata such as the tables and views and their corresponding columns.

The “Database Column List” contains the columns that are available from the connected

database table. Double clicking any of the items will insert its name at the current cursor

position in the SQL statement area.

The button “Evaluate” allows you to test the syntax and the top 10 results of your query,

avoiding surprises after execution.

Note. The notation #table# is a placeholder for the input table. Do not remove it! Some

database software also require the statement “as <new-table-name>” to work. Click the

“Evaluate” button to evaluate the SQL statement and return the first 10 rows of the result.

If there is an error in the SQL statement, an error message will be shown in the Evaluate

window.

Figure 2.13. Configuration window of the DB Query node.

Chapter 2: Database Operations

19

In the “Database_Operations” workflow, we introduced a “DB Query” node to implement our

target query, including a row filter and a column filter, as described above.

SELECT * FROM #table# as tem234 where product != 'prod_4' AND country = “Germany”

Note. The “DB Row Filter” node, as the “DB Column Filter” node and the “DB Query” node,

do not operate directly on data, they simply customize the input SQL query without

executing it. In fact, all database processing nodes do not have a data output port (black

triangle), but instead a database output port (brown square). This is because they do not

output a data table, but just a SQL query.

Sometimes, for very large database tables, it can be useful to create a targeted SQL query

before pulling in the data. In fact, the download of very large tables might consume all available

memory and slow down the workflow execution.

2.5. Utility Nodes for Databases

If you need to execute a SQL statement on the database before pulling out the data, then the

“DB SQL Executor” is your node. This node implements and executes a SQL statement on the

database connection available at its input port. It then re-presents the same database

connection at the output port for further database operations.

The task of the “DB SQL Executor” node is to allow the execution of any SQL statements on the

connected database. While the “DB Query” node produces a SQL statement that gets appended

to the input SQL statement after the node execution, the “DB SQL Executor” node creates the

SQL statement and already runs it against the selected database during the node execution.

Since later on, in the “Database_Operations” workflow, we would like to use the “DB DELETE

(TABLE)” and “DB UPDATE” node, that physically alter the content of the database, we insert a

spurious record with product ‘prod_5’ to be removed later. Such insertion is executed via a “DB

SQL Executor” node. As we have already said, execution of this node physically executes the

SQL statement on the connected database. It is then useful to make changes into the

underlying database, such as deletions and insertions, for example. In our example workflow

“Database_Operations” we use it to insert spurious records in the database table before

proceeding with the next workflow operations.

DB SQL Executor

The “DB SQL Executor” node executes a SQL query on the database connection available at its

input port. The most important configuration setting required is the SQL statement. If you want

Chapter 2: Database Operations

20

to execute multiple SQL statements, the checkbox “Support multiple SQL statements” has to

be checked. In this case, the default SQL statement separator is “;”.

Finally, two last nodes complete the landscape of the database processing nodes: “DB Query

Injector” and “DB Query Extractor”.

DB Query Injector

The “DB Query Injector” node takes a database connection and a flow variable as input and

produces a SQL query at the output port. The flow variable contains the SQL query that will be

produced at the output port.

The goal of this node is similar to the goal of the “DB Table Selector” node. The only difference

is in the way the new SQL query is defined: the “DB Table Selector” node builds the SQL query

in an SQL editor (if “custom query” option is checked) in the configuration window, while the

“DB Query Injector” node takes the SQL query from the input flow variable of type String.

Since the SQL query comes from the input port and this is all the settings needed, the node

requires no configuration besides the name of the input flow variable containing the SQL query.

Figure 2.14. Configuration window of the DB SQL Executor node.

Chapter 2: Database Operations

21

DB Query Extractor

The inverse path of the “DB Query Injector” node is implemented by the “DB Query Extractor”

node.

The “DB Query Extractor” node connects to a SQL query running on a database connection

(brown square) and extract the SQL statement, which is output as a flow variable and as a data

table. The SQL query in the flow variable port can feed a “DB Query Injector” node, therefore

allowing for extraction and re-execution of complex SQL statements.

The “DB Query Extractor” node also requires no configuration besides the name of the output

flow variable.

In workflow “Database_Operations”, we used the “DB Query Extractor” node to extract the SQL

query resulting from the cascade of the “DB Row Filter” node and the “DB Column Filter” node.

The final result was stored in a flow variable named “sql” and also presented at the output port

of the node. The extracted SQL query is the following:

SELECT product,country,date,quantity,amount FROM (SELECT * FROM (SELECT * FROM sale

s) table_1133717088 WHERE product != 'prod_4' AND country = 'Germany') table_765435

881

Where the outer SELECT statement is the result of the “DB Column Filter” node and the inner

SELECT statement is the result of the “DB Row Filter” node.

2.6. Reading Data resulting from a SQL Query

So far we have connected to the database and built a SQL query that fits our purposes. How do

we run the SQL query on the database and get the results into the KNIME workflow? We need

a reader node. There are a number of such database reader nodes, each one operating a slightly

different task. The simplest – and yet the most powerful one - is the “DB Reader” node.

DB Reader

The “DB Reader” node executes the SQL query at its input port on the

database and produces the resulting data table at its output port.

This node does not need any configuration settings. Everything that is

needed, such as the database connection and the SQL query to execute, is

contained in the input SQL query.
Figure 2.15. The DB

Reader node.

Chapter 2: Database Operations

22

Note. The “DB Reader” node has a dark brown square as input port (SQL statement) and a

black triangle as output port, i.e. it takes a database connection with a SQL query as input

and produces a KNIME data table as output.

We introduced a few “DB Reader” nodes into the “Database_Operations” workflow, each one

connected to a different branch. Since all branches though are implementing the same SQL

query, either as free code, or created with the help of database processing nodes, or injected

from a flow variable, you can compare the SQL results by comparing the output data tables

from all these “DB Reader” nodes.

However, sometimes the SQL query at the input port is not pre-defined and therefore not easy

to build statically. It can change from one execution run to the next. In this case, we need to

parameterize it: either we build it dynamically, for example via a DB Query node or we use a

“Parameterized DB Query Reader” node.

Let’s start with an example. The SQL SELECT statement extracted in the previous section is

equivalent to the following SQL statement:

SELECT product, country, date, quantity, amount from sales

WHERE product = 'prod_1' OR product = 'prod_2' OR product = 'prod_3'

This is a very commonly used type of SELECT query: a query looping over a number of distinct

values. As there are only three values involved in the WHERE condition, this query is still

manageable manually. Sometimes, though, the number of values involved in the WHERE

condition can be much higher, change for each execution run, or even unknown.

In cases like this, it can be necessary to use the values of another column as the matching

patterns for the WHERE condition in the SELECT query. In our workflow, for example, we could

create a data table with the values “prod_1”, “prod_2” and “prod_3” in one column and use this

column’s values as the matching patterns for the WHERE condition in the SELECT query.

To create a data table from inside a workflow we can use the “Table Creator” node. The “Table

Creator” node simulates an Excel Sheet and is often used to create temporary small data sets.

We have introduced it into the workflow “Database_Operations” to create two data columns:

one named “include” containing “prod_1”, “prod_2”, and “prod_3” and one named “exclude”

containing “prod_5”. The idea would be to loop through all values in column “include” and

extract the matching records from the database.

Now that we have a data column containing all values we want to match in the database, we

need a node to loop on all those values and search for possible matches: the “Parameterized

DB Query Reader“ node. This node has two input ports and one output port. At one input port

the node expects a data table and at the other input port a database connection. A data table

is also produced at the output port.

Chapter 2: Database Operations

23

Table Creator

The “Table Creator” node provides a small

editor to manually generate data from

inside a workflow. It does not belong to

the database category, and it is actually

located in the category “IO” -> “Other” in

the “Node Repository” panel. The

configuration window of the “Table

Creator” node contains the data editor

with the following properties:

• The cell content is editable.

• Selecting a column and right-clicking

its column header displays a menu to

change the column’s properties

(name, type, missing values, and

format) and allows to insert or delete

columns

• Selecting a row and right-clicking its

RowID allows to change the RowID’s

properties and to insert or remove

rows

• “Copy and paste” of cells from Excel sheets is also enabled.

The “Parameterized DB Query Reader” node connects to a database, and implements and

executes a SQL query like:

SELECT * FROM #table# AS “table” WHERE <database-column-name> = <value from $<colum

n-name>$>

During execution, this SQL query will be executed as many times as the number of values in the

selected column of the input data table, where in each of the query $<column-name>$ is

substituted with a value from the selected column of the input data table. The resulting data

are concatenated together and imported from the database into the KNIME workflow.

Parameterized DB Query Reader

The configuration window contains:

• The editor for the SQL statement

Figure 2.16. Configuration window of Table Creator node.

Chapter 2: Database Operations

24

• The list of Database Columns from the input database.

• The list of columns from the input data table whose distinct values will be looped over

• The “Database Metadata Browser” to explore the tables and table structures in the

database and help to build the SQL statement in the editor.

Again, double-clicking one element here, automatically inserts it in the SQL statement editor.

At the bottom is a series of additional options:

• “Include empty results” to append all empty results to the output table where they will be

represented as a Missing Cell.

• “Append input columns” to append the input columns used in the looping

• “Retain all columns” to append all input columns including those not used in the looping

• “Fail on error” to make the node fail when an error is encountered in the SQL query

execution

We have seen that, if we can write little SQL, we do not need many extra nodes to build a SELECT

query. We have seen, for example, that after connecting to a database using one of the

Connector nodes, we can write the SELECT query directly into a “DB Table Selector” node and

then read the data into the workflow by means of a “DB Reader” node. We can reduce the

number of nodes even further by using a “DB Query Reader” node.

Figure 2.17. Configuration window of Parameterized DB Query Reader.

Chapter 2: Database Operations

25

The “DB Query Reader” node has a database connection at the input port and a data table at

the output port. This node allows you to execute a SQL statement, including table selection,

and import the result into the KNIME workflow. The “DB Query Reader” node performs almost

all database operations:

• Reads and executes the SQL statement in its configuration window, including the

database table selection

• Pulls the resulting data from the database into a KNIME data table

DB Query Reader

The configuration window of the “DB Query Reader” node only requires the SQL statement to

retrieve the data from the database table.

Here the “Database Metadata Browser” panel can help with building the SQL query. Just hit the

Refresh button at the bottom of the panel to update the database structure and double-click

table and field names to make them appear automatically in the SQL query with the right syntax.

At the bottom right there is the “Evaluate” button where you can evaluate the SQL statement

and return the first 10 rows of the result. If there is an error in the SQL statement, then an error

message will show in the Evaluate window.

In the lower part of the “Database_Operations” workflow we introduced a “DB Query Reader”

node with a database connection at its input port and using:

• The “KCBBookCopy.sqlite” database located in the “KALdata” folder in the “KNIME

Explorer” panel

• The SQL statement SELECT product, country, date, quantity, amount FROM

sales where product != 'prod_4'

Chapter 2: Database Operations

26

2.7. Writing Data resulting from a SQL Query

Similarly, the “DB Reader” node, KNIME offers a “DB Writer” node. The “DB Writer” node writes

data from a data table input port into a database table. The “DB Writer” node has two output

ports, one containing the input table with additional columns providing the writing status for

each row and warnings (if any), and the other is the database written table.

DB Writer

The configuration window requires the following values:

• The name of the table to write into. The “Select Table” button helps with locating the right

table, if already existing.

• The “Batch size” with the number of rows to be written in each batch job. For higher

performance you should choose a higher number. However, a too high number might need

more memory.

• An Exclude/Include panel to set the columns to write or to exclude.

Additional options, to:

Figure 2.18. The configuration window of the DB Query Reader node.

Chapter 2: Database Operations

27

• “Remove existing table” in case the table already exists.

• “Append write status columns” for each written row in the output table.

• “Disable DB Data output port” to avoid problems with databases that do not support

subqueries.

• “Fail on error” in case an error is encountered when writing on the database.

Sometimes we do not even need to pass through the KNIME Analytics Platform. We connect

to the database, we select the table, we build the SQL query, and we execute it against the

selected database and just write the results into a table in the same database. This is done

with the “DB Connection Table Writer” node.

The “DB Connection Table Writer” node reads and executes the SQL query at the input port and

writes the resulting data into a database table. At the input port (brown square) we find the

database connection with the SQL query. The output port (brown square) contains the

database connection with the SQL query used to write data into the table.

Figure 2.19. Configuration window of DB Writer node.

Chapter 2: Database Operations

28

DB Connection Table Writer

The only setting required in the configuration

window is the name of the database table to

which the data is written. The database name is

already known to the node since it is part of the

database connection parameters.

Another option is to determine how the node

should behave if the specified table already

exists:

• “Overwrite” overwrites the existing table (i.e.

it will be dropped and recreated)

• “Append” adds the new data to the existing

table (no new table is created)

• “Fail” makes the node execution fail

We introduced one “DB Connection Table Writer” node to write the data resulting from the

sequence “DB Row Filter” + “DB Column Filter” into a new database table named “new_sales”.

2.8. Database UPDATE and DELETE Commands

There are a couple of database manipulation nodes available in the “Database” category: the

“DB Update”, “DB Delete (Filter)”, “DB Delete (Table)”, “DB Merge”, “DB Row Manipulator” node,

among other things. In this section, we will cover two nodes, the “DB Update”, and “DB Delete

(Table)” node. Both nodes connect to a database and perform a specific query (update or

delete) on a specific subset of data as defined by the “Select WHERE Columns” panel in their

configuration window. The “Select WHERE Columns” panel uses the values in the selected

column(s) to match the values in the corresponding database table field(s) for the WHERE

clause.

Both nodes have two input ports – one for a data table, the other one for a database connection

– and two output ports – one containing the input table with additional columns providing the

deletion and update status and one referencing the SQL query. The data table at the input port

is used for the WHERE and SET conditions in the DELETE and UPDATE statements.

Figure 2.20. Configuration window of DB Connection

Table Writer node.

Chapter 2: Database Operations

29

DB Delete (Table)

The “DB Delete (Table)” node

deletes all records in the selected

table that match the WHERE

clause.

The WHERE clause identifies the

table field(s) with the same name

as the selected column(s) in the

Include/Exclude frame.

All records in the table, with

value(s) in the field(s) matching

the values in the selected

column(s), are deleted during

execution through a DELETE

statement.

DB Update

The “DB Update” node updates the

value(s) of some table field(s)

through a SET WHERE statement.

The WHERE clause is built like for

the “DB Delete” node. That is, the

WHERE clause identifies the table

field with the same name in the

database as the selected column

in the “Select identification

columns (WHERE in SQL)” frame.

Record value(s) of rows identified

in the WHERE set are then changed,

according to the SET condition. All

field(s) with the same name as the

selected column(s) in the “Select

the columns to update (SET in

SQL)” frame, take on the value(s)

Figure 2.21. Configuration window of the DB Delete (Table) node.

Figure 2.22. Configuration window of the DB Update node.

Chapter 2: Database Operations

30

of the SET columns, through an UPDATE statement.

The final workflow, named “Database_Operations”, is shown in the figure below.

2.9. Database Type Mapping

The database framework allows you to define rules to map from database types to KNIME

types and vice versa. This is necessary because databases support different sets of types. For

example, Oracle only has one numeric type with different precision to represent integer and

floating-point numbers whereas KNIME uses different types (integer, long, double) to represent

them.

Figure 2.23. The “Database_Operations” workflow in folder “Chapter2” shows several nodes for database operations.

From right to left: Database Connectors (dedicated and generic), in-database processing nodes, utility nodes,

readers, and writers.

Chapter 2: Database Operations

31

Especially, date and time formats are supported differently across different databases. The

zoned Date&Time type that is used in KNIME to represent a time point within a defined time

zone is only supported by few databases. With the type mapping framework, you can force

KNIME to automatically convert the zoned date time type to String before writing it into a

database table and to convert the String back into a zoned date time value when reading it.

The type mapping framework

consists of a set of mapping rules

for each direction specified from

the KNIME Analytics Platform view

point:

• Output Type Mapping: The

mapping of KNIME types to

database types

• Input Type Mapping: The

mapping from database types

to KNIME types

Each of the mapping directions has

two sets of rules:

• Mapping by Name: Mapping

rules based on a column name

(or regular expression) and

type.

• Mapping by Type: Mapping rules based on a KNIME or database type. All columns of the

specified data type are considered.

The type mapping can be set and altered at various places in a workflow. All database nodes

with a KNIME data table as input provide the “Output Type Mapping” tab in the configuration

window to map the types of the input KNIME columns to the types of the corresponding

database fields.

2.10. Big Data Platforms and MongoDB

Amongst the dedicated connectors, there are a few dedicated to big data platforms, such as

Apache Hive, Impala Cloudera, and more. These nodes can be obtained by installing the KNIME

Big Data Extension.

Figure 2.24. The "Input Type Mapping" tab in the configuration window

of the SQLite Connector node.

https://www.knime.com/knime-big-data-extensions
https://www.knime.com/knime-big-data-extensions

Chapter 2: Database Operations

32

As for all databases, you can connect to a big data

platform using either the dedicated connector or the

generic “DB Connector” node. If you use the generic “DB

Connector” node, you need to supply the JDBC driver

file, usually provided by the big data platform vendor.

As for all databases, after the connection has been

established, you can use a “DB Table Selector” node for

table selection and a sequence of in-database

processing nodes and “DB Query” nodes to build the

desired SQL query.

However, writing to a big data platform is not possible

through a “DB Writer”, “DB Update”, or “DB Delete” node.

For big data platforms we need to use one of the

following nodes.

• A “HDFS Connector” node or its related node

(“HDFS Connector (KNOX)”). This node supports

HDFS, WebHDFS, and HTTPFS. This node can be

followed by a “Transfer Files” node to upload data

onto the HDFS platform, or to read data from an

HDFS platform. Similarly, it is possible to load data

directly on a Hive or Impala database using a “DB

Loader” node right after this node. All these nodes

are available in “IO/Connectors” and “IO/File

Folder Utility” categories.

• An alternative way to load data onto a big data

platform is to go through Spark and use the

Parquet format. These nodes are available in the

“Apache Spark” category.

If you have opted for NoSQL databases, such as

MongoDB, CouchDB, or NewSQL, in general you need to

rely on REST service nodes in the REST Web Services

category (see chapter 3) to extract information. Indeed,

for now only nodes to read, write, update, save, and

remove records in a MongoDB database are available in

KNIME Analytics Platform under the “Tools &

Services/MongoDB” category.

Figure 2.25. Dedicated connector nodes to

big data platforms available through the

KNIME Big Data extension.

Figure 2.26. The MongoDB nodes in "Tools &

Services".

Chapter 2: Database Operations

33

2.11. Exercises

Exercise 1

Create an empty workflow, called “Exercise1”, in an “Exercises” workflow group under the

existing “Chapter2” workflow group.

The “Exercise1” workflow should prepare the database tables for the next 2 exercises. It should

therefore:

• Read the file “cars-85.csv” (from the “KALdata” folder);

• Write the data to an SQLite database table named “cars85” in KCBBook.sqlite database;

• Write only the first 20 rows of the data into a table called “cars85firsthalf” in the same

KCBBook.sqlite database.

Solution to Exercise 1

The “DB Writer” node is used in conjunction with a “SQLite Connector” node.

Figure 2.27. Exercise 1: The workflow.

Chapter 2: Database Operations

34

Exercise 2

In the workflow group named “Chapter2\Exercises” create a workflow called “Exercise2” to

perform the following operations:

• Connect to “KBCBook.sqlite” database and read “cars85” table

• Remove the first two columns: “symboling” and “normalized_losses”

• Only keep rows where “make” is “bmw” or “audi”

Solution to Exercise 2

There are many ways to implement this exercise. We propose four of them:

• “DB Connector” + “DB Table Selector” + in-database processing nodes

• “DB Connector” + “DB Table Selector” + in-database processing nodes for column

selection + SQL query for row filter (WHERE)

• “SQLIte Connector” + “DB Reader” + full SQL query

The full SQL SELECT query for the last two options is:

SELECT make, fuel_type, aspiration, nr_doors, body_style, drive_wheels, engine_loca

tion, wheel_base, length, width, height, curb_weight, engine_type, cylinders_nr, en

gine_size, fuel_system, bore, stroke, compression_ratio, horse_power, peak_rpm, cit

y_mpg, highway_mpg, price

FROM cars85 where make = 'bmw' OR make = 'audi'

The SELECT query is a bit tedious to write mainly because of all the columns of the table we

want to keep. This same SQL query can be implemented with a combination of “DB Column

Filter” and “DB Row Filter” nodes (first approach from the list).

Alternatively, we can use a simple SQL query for the row filter and a “DB Column Filter” node

(second approach in the list). The simple SQL query for the row filtering part then takes the

shape:

SELECT * FROM cars85 where make = 'bmw' OR make= 'audi'

All described approaches are shown in the figure below. Notice that the metanode named “Get

path to DB” uses a flow variable connection (the red connection) to parameterize the sqlite file

path. We will see flow variables later in this book.

Chapter 2: Database Operations

35

Exercise 3

In the “Chapter2\Exercises” workflow group create a workflow called “Exercise3”. The goal of

this exercise is to practice with the Parameterized DB Query Reader node.

Extract “make”, “nr_doors”, “length”, “width”, and “engine_type” from table “cars-85” in

KCBBook.sqlite database, as prepared in exercise1. Like in exercise 2, pre-process the dataset

to keep only “bmw” and “audi” cars. This time though use a “Database Looping” node instead

of SQL queries and database filter nodes.

Figure 2.28. Exercise 2: Accessing and filtering data with SQL queries and/or in-

database processing nodes.

Chapter 2: Database Operations

36

Solution to Exercise 3

For the solution of this exercise, we need the list of the values to keep for attribute “make”:

“audi” and “bmw”. We build this with a “Table Creator” node in a column named “include-make”.

Afterwards a “Parameterized DB Query Reader” node loops on all the distinct values in column

“include-make” and keeps the rows in the database table where “make” matches any of these

values.

The “Parameterized DB Query Reader” node is used in standalone mode and in conjunction

with a dedicated connector node.

Figure 2.29. Exercise 3: The workflow.

37

Chapter 3: Accessing Information from
the Web

We are all familiar with the World Wide Web, the Web: a huge data pool whose resources can

be accessed through Universal Resource Locators (URLs). Accessing information on the web

through KNIME Analytics Platform allows us to retrieve and manipulate data in real-time.

An important repository of information for public and private documents resides in the whole

Google environment: docs, sheets, drives, and so on. Similar to Excel sheets, KNIME Analytics

Platform can also access Google Sheets.

3.1. Accessing Google Sheets

One powerful and simple way to create and edit data online while collaborating with other users

in real-time is via Google Sheets. KNIME Analytics Platform offers a full set of Google Sheets

dedicated nodes. A number of such nodes are available to connect, read, write, update, and

append cells, rows, and columns into private or public Google Sheets. They can be found in the

Node Repository under:

• “IO/Connectors/Google”

• “IO/Read”

• “IO/Write”

Let’s start with connecting generically to the Google API via the Google Authenticator node.

This node provides a generic connection to the Google API, to connect to a Google Sheet or

other Google services.

Notice that user credentials to access any Google service are never seen by KNIME. All KNIME

keeps in memory is the token derived from the authentication operation on the Google access

page. Even the authentication key is not saved anywhere on your hard-disk, unless an explicit

instruction has been set.

Note. KNIME Analytics Platform does not store your Google credentials, just the

authentication token (if at all). Your Google credentials are entered in the Google sign-in

page and not in the KNIME software.

Chapter 3: Accessing Information from the Web

38

If you do not want to share the Google authentication token, remember to make the workflow

forget about it by clicking the button “Clear Selected Credentials” in the configuration window

of the Google Authenticator node.

Google Authenticator

This node authenticates to Google services specified

in the node settings. Authentication happens in the

configuration window.

After choosing the scopes, one must authenticate

using the "Login" button. A pop-up will appear that

asks the user to grant access to the selected scopes.

If you have already authenticated, the "Login" will test

the stored credentials in the selected location. Access

can be revoked at any time by visiting

myaccount.google.com/permissions.

By default, the authentication key is kept in memory

for that particular instance unless differently specified

in the configuration window. the authentication key is

kept in memory, the user must authenticate again at

each new KNIME session. The authentication key can

be stored in a file via the “Custom” option. In this case,

a folder must be specified where to store the key. This

option is useful in case a shared authentication key is

used.

Only in the case where authentication happened via

the API key (Authentication type = API Key), which could be a JSON file or a P12 file stored in

some location, the user does not need to re-authenticate the next instance of KNIME Analytics

Platform.

The extent of the number of Google services accessible via the authentication key is defined in

the lower part of the configuration window under “Scopes of access”. The user can select from

the standard scopes or add a custom scope.

Among all available Google services, after authentication, in this example we want to access

the Google Sheets service. The node to do that is the “Google Sheets Connector” node.

Figure 3.1. Configuration window of the Google

Authenticator node.

https://myaccount.google.com/connections

Chapter 3: Accessing Information from the Web

39

Google Sheets Connector

The Google Sheets Connector node creates a connection to Google Sheets, given an existing

Google API connection at its input port. Since the whole required information is already

contained in the authentication key at its input port, no other configuration setting is required,

and no configuration window is provided. It is clear that the input authentication key must be

enabled to access the Google Sheets service even in Read/Write mode, if required.

Now, let’s read a tab of a Google sheet. To read a tab ("sheet") of a Google spreadsheet, we use

the “Google Sheets Reader” node. In the “Google Sheets Reader” node, the spreadsheet can be

selected among all spreadsheets with access permission.

Inside the selected sheet, you can specify a specific range of cells to be read. The range must

be entered in A1 notation (e.g., "A1:G10"). For more information about A1 notation visit:

https://developers.google.com/sheets/api/guides/concepts#a1_notation.

Google Sheets Reader

 The Google Sheets Reader accesses data

from one tab “sheet” of a Google

spreadsheet. The following settings can be

configured:

• Spreadsheet: Selects one spreadsheet

from the list of spreadsheets available

on Google Drive. Clicking on button

“Select…” opens a dialog with the list of

available spreadsheets from Google

drive. If a document doesn’t appear in

this list, make sure that you have

permissions to access it and that you

have opened it at least once within a

browser to associate it with your

Google account.

• Sheet: Selects the sheet from the spreadsheet that should be read. Available sheets can

be selected from the drop-down menu. The button “Open in Browser…” opens the selected

spreadsheet in the browser. This is useful to ascertain whether that is the sheet of

interest.

Figure 3.2. Configuration window of the Google Sheets

Reader node.

https://developers.google.com/sheets/api/guides/concepts#a1_notation

Chapter 3: Accessing Information from the Web

40

• Select First Sheet: When selected, the first sheet of the spreadsheet will be read instead

of the one selected from the drop-down menu.

• Range: The range of cells that should be read from the sheet can be specified here in A1

notation. (E.g. "A1:G20").

• Two checkboxes that specify if the sheet includes column names and row ids,

respectively.

To translate these notions into a practical workflow, we built a workflow in “Chapter3” named

“Access_GoogleSheets”. This workflow accesses the sheet named “sheet” from a public

Google spreadsheet named “Test Sheet for KAL”. This sheet contains just randomly generated

numbers. We first connected to the Google Spreadsheet using the “Google Sheets Connector”

and retrieved the data from the Spreadsheet “Test Sheet for KAL” and the Sheet named “sheet”

using the “Google Sheets Reader” node.

There are more nodes covering different functionalities on Google Sheets. We have not

introduced these nodes in the example workflow, but we will cover them briefly in the rest of

this section.

For example, the node “Google Sheets Appender” adds a new sheet to an existing spreadsheet

in Google Sheets. The configuration settings are very similar to the settings of the “Google

Sheets Reader” node, plus a few additional writing settings.

Figure 3.3. Workflow "Access_GoogleSheets" accessing and reading

content from a Google Spreadsheet.

Chapter 3: Accessing Information from the Web

41

Google Sheets Appender

• Spreadsheet and Sheet name

require the selection of the

spreadsheet among one of the

available spreadsheets on

Google drive and the selection of

the sheet inside the

spreadsheet.

• Add column/Add row header:
Specifies, whether the column

names should be written in the

first row and whether the row

ID's should be written in the first

column of the spreadsheet.

• For missing values write: By

selecting this option, you can

specify a string you want to

substitute for missing values. If

the option is left unchecked, the

cells with missing values remain

empty.

• Write Raw (do not parse
numbers, dates, hyperlinks, etc): Values are written into the spreadsheet as-is ("raw"), i.e.

they will not be parsed. For example, strings like =hyperlink("example.com", "example")

will be parsed to hyperlinks if this option is unchecked.

• Create unique sheet name: The node will create a unique sheet name based on the given

sheet name. (Example: Should 'SheetOne' already exist, the unique sheet name will be

'SheetOne (#1)')

• Open spreadsheet after execution: Opens the spreadsheet after it has been written

successfully. The spreadsheet will be opened in the system’s default browser.

• Exclude/Include columns: Uses a classic Include/Exclude frame to select the columns

that will be written to the sheet file.

Instead of appending a new sheet, we might want to update an existing one. For that, we use

the “Google Sheets Updater” node.

Figure 3.4. Configuration window of the Google Sheets Appender.

node.

Chapter 3: Accessing Information from the Web

42

Google Sheets Updater

The “Google Sheet Updater” node

enables us to write an input data table

to an existing Google sheet. It can

overwrite some or all of the content of

a sheet or append to the content of a

sheet. The dialog settings are the

same as in the “Google Sheets

Appender” node, with a few additional

options:

• Range: If only part of the content

of a sheet is to be overwritten,

the relevant range can be

specified in A1 notation. The

size of the input table must not

exceed the size of the selected

range, otherwise execution will

fail.

• Append to sheet: When this

option is selected, the data table

content will be appended to the

selected sheet. This means we

append data to an existing sheet

and do not add a new sheet into

an existing spreadsheet as we did with the “Google Sheets Appender” node.

• Clear sheet before writing: When this option is selected, the sheet or the selected range

of the sheet will be cleared before writing. This deletes the content in the specified

sheet/range.

If you want to write the input data table to a new Google Sheets spreadsheet instead of

overwriting or appending data to an existing sheet, you can use the “Google Sheets Writer”

node.

Taken together, these nodes enable us to access and manipulate data in Google Sheets

through a KNIME workflow.

Figure 3.5. Configuration window of the Google Sheets Updater

node.

Chapter 3: Accessing Information from the Web

43

Google Sheets Writer

The “Google Sheets Writer” node enables us to write data into a new Google sheet.

The configuration settings are the same as for the “Google Sheets Updater” node.

However, Spreadsheet and Sheet name cannot be selected from a dropdown menu of existing

spreadsheets but must be entered manually.

3.2. Accessing REST Services

Application to application communication is becoming more widespread. These methods of

communication between applications over a network are referred to as Web Services. Web

Services have been standardized as a means of interoperating between different operating

systems running different software programs in different programming languages.

Nowadays a number of web services are available, such as financial estimations, weather

reports, chemistry related data. This means that in many data related fields, tools and data

have been made directly available in the form of web services. Often it is enough to connect to

such web services and send the appropriate message request with the appropriate input data

to get the required information. Following the knowledge recycling principle, meaning that it is

better to use a tool available on the web rather than to re-implement it ourselves, we would like

to be able to connect to and run a web service inside any of our workflows. One very powerful

way to do this is using the REST Web Services nodes.

Web services that follow the REpresentational State Transfer (REST) architectural principles3

offer a robust and flexible way to access and manipulate textual representations of web

resources. Since version 3.2, KNIME Analytics Platform provides a category, named “REST Web

Services”, which contains nodes that enable the user to interact with REST services.

The “REST Web Services” category contains 6 nodes - “GET Request”, “POST Request”, “PUT

Request”, “DELETE Request”, “PATCH Request”, and “Webpage Retriever” – to deal with REST

operations. The “REST Web Services” category gets installed onto the “Node Repository” panel

through the REST Client Extension. As to install any KNIME Extension Package, select the “go

to Info page” icon at the top-right of the workbench:

• Select “Install Extensions”

3 Roy T. Fielding, Richard N. Taylor, “Principled design of the modern Web architecture”, Journal ACM Transactions

on Internet Technology (TOIT) Vol. 2 Issue 2, 115-150 (2002)

Chapter 3: Accessing Information from the Web

44

• From the “Available Software” window, in the top box containing “type filter text”, type

“web”

o Inside “KNIME & Extensions” select the package called “KNIME REST Client

Extension”

o Click “Next”

o Follow the installation instructions

After the package has been successfully installed, you should find a category named “REST

Web Services” in the “Tools & Services” category in the “Node Repository” panel.

In order to show the potentialities of this “REST Web Services” nodes, we created two empty

workflows in “Chapter3” folder and we named them “GET Request” and “POST Request”.

The “GETRequest” workflow accesses the JSONPLaceholder API to retrieve fake post content

from fake user IDs. JSONPlaceholder API is a development test utility for developers to test

their requests to REST APIs. The request takes the form:

https://jsonplaceholder.typicode.com/posts?userId=<userID>

The value of parameter userID has to be passed in the request message and the list of posts

with their content is returned with the response message in JSON format.

The list of required userID is created in a Table Creator node. Then the REST request is built

using a “String Manipulation” node as:

join("https://jsonplaceholder.typicode.com/posts?userId=", $userID$)

where $userID$ comes from the userID input column and contains the userID values.

The "GET Request" node is introduced to submit the GET request to the REST server. The "GET

Request" node has 6 tabs in its configuration window:

• "Connection" contains all REST service settings, including the URL source;

• "Authentication" sets the authentication credentials, if required;

• “Proxy” allows to set proxy settings;

• “Error Handling” defines how to handle in case errors happen;

• “Request Headers” allows for customization of the request headers;

• “Response Headers” allows to interpret customized response headers.

When executed, the “GET Request” node sends all requests in batches of N, as defined in the

“Concurrency” setting, to the REST service specified in the URL parameter and presents the

subsequent response at its output port. The size of N can be specified in the Connection

Settings under Concurrency (Number of concurrent requests). The JSONPlaceholder API REST

https://jsonplaceholder.typicode.com/

Chapter 3: Accessing Information from the Web

45

service does not require any authentication and therefore we selected option “None” in the

“Authentication” tab in the configuration window of the GET Request node.

The response is usually encapsulated in an XML or JSON structure, which needs to be

interpreted to extract the value(s) we were looking for, in our case the body and title values. If

the response is returned in XML format, you probably need to use the “XPath” node from the

“XML” category in the “Node Repository” to retrieve the values you are interested in. If the

response is returned in JSON format, you need to resource to one of the nodes in the “JSON”

category, including “JSON Path”, “JSON To XML”, and especially “JSON to Table”. In our

example, we used “JSON Path” and “JSON to Table” nodes. JSON Path is used to extract the

array of posts from the response JSON structure; while the JSON To Table node does all the

remaining parsing work for us, exposing at the output port all values contained in the input

JSON structure.

GET Request: “Configuration Settings” Tab

GET request URL(s) that are sent to a REST service is (are) identified either through one single

manually inserted fixed URL or through a list of dynamic URLs in an input data column.

Figure 3.6. Workflow "GETRequest".

Chapter 3: Accessing Information from the Web

46

Two options in the “Connection” tab

respectively enable these two modes: “URL”

and “URL column”.

“Delay (ms)” and “Concurrency” both deal

with multiple requests. “Delay (ms)”

specifies a delay between two consecutive

requests, e.g. in order to avoid overloading

the web service. “Concurrency” allows for N

parallel GET requests to be sent, if the REST

service allows it.

The flags in the SSL section push for a higher

tolerance in security when checking the REST

host SSL certificates. When enabled, even if

some SSL certificates are not perfect the

returned response is accepted.

The flag “Follow Redirects” forces the GET

request to be redirected, if so specified in the

REST service.

“Timeout” sets the number of seconds to wait before declaring a connection timed out.

“Body column” contains the name of the response column in the output data table.

GET Request: The Other Tabs

The “Authentication” tab sets the

authentication credentials, if required by the

REST service.

The node supports a number of

authentication methods, e.g. None, BASIC,

DIGEST, NTLM (Labs), or Kerberos.

Username and password can be provided

manually or via the Credentials Widget

node. As for the database nodes, workflow

credentials are automatically encrypted,

while manual typing of username and

password requires the definition of a Master

Key for the encryption process. The Master Key can be set in the “Preferences” page.

Figure 3.7. Get Request node configuration: the

"Connecton" tab.

Figure 3.8. GET Request node configuration: the other tabs.

Chapter 3: Accessing Information from the Web

47

In the “Proxy” tab, you can disable proxy, or set up your own proxy, if required.

When something fails in the REST service, the output data table will contain the rows with the

status of the requests. In some cases, we might desire the workflow to just stop and signal the

REST error. In this case, under the “Error Handling” tab we can enable “Fail node execution” or

“Output missing value” depending on the type of errors.

Every request being shipped off to a REST service may contain a header. By default, in the “GET

Request” node, requests are shipped with no header. However, custom request headers can be

defined in the “Request Headers” tab. A request header consists of many parameters and every

parameter consists of 3 fields: key, value, and kind. Three request headers have been pre-

loaded as templates: none, generic REST headers, and web page related headers.

The response object that comes back can also contain headers, at least the status of the

request and the content-type. Other headers can be imported if the flag named “Extract all

Headers” at the very top of the “Response Headers” tab is enabled. If you prefer not to extract

all headers from the response, but just some, you can set the key names one by one in the tab

table. The value associated with the keys will be extracted from the response object and placed

in a data column of the output table. The name of this data column is also set in the “Response

Headers” tab.

JSON Path

The "JSON Path" node parses a JSON structure via a custom query. In order to do that, it needs

the following settings in the configuration window:

• The input data column containing the JSON structures to parse

• The editor for the custom query.

• A flag to optionally remove the original JSON column from the output table

In the lower part of the configuration window a preview frame is available.

It is possible to interactively click JSON items in the preview frame and automatically define

the JSON custom parsing query.

The buttons above the preview frame allow to add/edit/remove the resulting custom JSON

parsing query into the editor.

Chapter 3: Accessing Information from the Web

48

JSON to Table

The "JSON to Table" node parses a JSON structure, extracts all values, and puts them in a

KNIME data table at the output port. In order to do that, it needs the following settings in the

configuration window:

• The input data column containing the JSON structures to parse

• Customized or default names for the data columns resulting from the parsing operation.

• The structure of the resulting columns (it is good practice to keep the result as a collection

column, since we do not know a priori how many columns will result from this blind

operation).

• The expansion level of the JSON structure (again, it is good practice to expand as little as

possible the original structure, since we do not know a priori how many levels it will

contain).

Figure 3.9. JSON Path node configuration.

Chapter 3: Accessing Information from the Web

49

The result at the output port is a KNIME data

table, containing the values from the REST

response, including the REST URL Request and

the Request Status.

The same post request to the JSONPlaceholder

API REST service could be sent via POST

Request. “REST Web Services” category offers

the “POST Request” node to send POST

requests to a service.

As a practical example to illustrate the

functionality of the “POST Request” node, we

altered the previous workflow to send a POST

request to add a new ID to the object in the

request. The POST request is the same as the

previous GET Request. The associated

functionality is different. Thus, instead of having

a “GET Request” node, we introduced a “POST

Request” node.

The “POST Request” node submits a POST

request to the REST server. The "POST Request" node has 5 tabs in its configuration window:

• "Connection" contains all REST service settings, including the URL source;

• "Authentication" sets the authentication credentials, if required;

• “Proxy” allows to set proxy settings;

• “Error Handling” defines how to handle in case errors happen;

Figure 3.10. JSON to Table node configuration.

Figure 3.11. Workflow "POSTRequest".

Chapter 3: Accessing Information from the Web

50

• “Request Header” allows for customization of the request headers;

• “Request Body” to send the data to be transmitted through the POST request;

• “Response Header” allows to interpret customized response headers.

Similarly to the “GET Request” node, when executed, the “POST Request” node sends all

requests in batches of N, as defined in the “Concurrency” setting, to the REST service specified

in the URL parameter and presents the subsequent response at its output port. Depending on

the response format, XML or JSON, you can use either an “XPath” node or a “JSON to Table”

node. Here we used again a “JSON Path” and a “JSON to Table” node.

POST Request: “Connection” Tab

POST request URL(s) that are sent to

a REST service is (are) identified

either through one single manually

inserted fixed URL or through a list of

dynamic URLs in an input data

column.

Two options in the “Connection

Settings” tab respectively enable

these two modes: “URL” and “URL

column”.

“Delay (ms)” and “Concurrency” both

deal with multiple requests. “Delay

(ms)” specifies a delay between two

consecutive requests, e.g. in order to

avoid overloading the web service.

“Concurrency” allows for N parallel

GET requests to be sent, if the REST

service allows it.

The flags in the SSL section push for

a higher tolerance in security when checking the REST host SSL certificates. When enabled,

even if some SSL certificates are not perfect the returned response is accepted.

The flag “Follow Redirects” forces the GET request to be redirected, if specified so in the REST

service.

“Timeout” sets the number of seconds to wait before declaring a connection timed out.

Figure 3.12. POST Request node configuration: the "Configuration

Settings" tab.

Chapter 3: Accessing Information from the Web

51

“Body column” contains the name of the response column in the output data table.

POST Request: “Request Body” Tab

POST request(s) sometimes need a

body of data. The data for the

request body is passed via the

“Request Body” tab in the

configuration window of the “POST

Request” node.

The request body can either be a

manually inserted fixed text or the

content of a data cell from the input

table. This is decided in the radio

button options “Use column’s

content as body” or “Use constant

body”.

If you need to connect to a SOAP

based web service via WSDL file, this

is also possible from within a KNIME

workflow. Here you would need to

use the “Generic Web Service Client”

node.

3.3. Exercises

Exercise 1

Retrieve information about selected products from fakestoreapi using a GET Request. This

resource is a freely available repository of fake products, and all information can be retrieved

via REST services.

Before using the service, obtain a list of product categories from Google Sheet “Demo Data”

and sheet “Products” as described in section 3.1.

Using this list, then use the following URL to access information for the specific products listed

in the Google sheet with:

Figure 3.13. POST Request node configuration: the "Request Body"

tab.

Chapter 3: Accessing Information from the Web

52

https://fakestoreapi.com/products/category/<product category>

Solution to Exercise 1

We first connect to Google Sheets using the sequence: “Google Authentication” node, “Google

Sheet Connection” node, and “Google Sheets Reader” node to retrieve the product category list

from the Google Sheet “Demo Data”.

We create the GET Request in a “String Manipulation” node as:

join("https://fakestoreapi.com/products/category/",$products$)

and execute it using the “GET Request” node.

The “JSONPath” node enables us to extract id and price for each product in the category. The

final result should be a table containing IDs and prices for the products in the selected

categories.

Figure 3.14. Solution workflow for Exercise 1.

53

Chapter 4: Date&Time Manipulation

4.1. The Date&Time Type

Let’s now have a brief look at the data table resulting from any of the branches of the

“Database_Operations” workflow built in chapter 2. We have three columns of String type

(“product”, “date”, and “country”) and two columns of Integer type (“quantity” and “amount”).

However, the data column “date” contains the contract date for each record and should be

treated as a date type variable. KNIME Analytics Platform has indeed the following dedicated

data types for date and time data:

• Date

• Time

• Date & Time

• Date & Time with zone

Note. In very early KNIME Analytics Platform versions, a single Date&Time type was

available. This date type is still available as a legacy type (“Legacy Date&Time). In order to

convert from a “Legacy Date&Time” type to the new Date&Time type, you will need to use

the “Legacy Date&Time to Date&Time” node. The “Date&Time to legacy Date&Time” node

moves the data cell into the opposite format direction.

Figure 4.1. The data table produced by the "Database_Operations" workflow implemented in chapter

2.

Chapter 4: Date&Time Manipulation

54

Date&Time formats in KNIME are expressed by means

of:

• A number of “d” digits for the day

• A number of “M” digits/characters for the month

• A number of “y” digits for the year

• A number of “h” digits for the hour

• A number of “m” digits for the minutes

• A number of “s” digits for the seconds

• A number of “S” digits for the milliseconds

These dedicated digits combined together produce a

string representation of the date and/or time (with or

without time zone). The table below sh ows a few

examples for 3:34pm on the 21st of March 2011 in

Berlin.

The new Date&Time type carries a number of dedicated

nodes implementing a large variety of operations. A full

category “Other Data Types”/“Time Series” contains a

large number of nodes implementing Date&Time

manipulation functionalities.

Type: format String representation

Date: dd-MM-yyyy 21-03-2011

Date: MMM/dd/yyyy Mar/21/2011

Time: hh:mm 15:34

Time: ss.SSS 00.000

Date&Time: dd.MM.yyyy hh.mm.ss.SSS 21.03.2011 15:34:00.000

Date&Time: dd.MMM.yy:hh.mm 21.Mar.11:15.34

Date & Time with zone: ss.SSSyyyy-MM-

dd'T'HH:mmSVV'['zzzz']

00.0002011-03-

21T03:34+02:00[Europe/Berlin]

Figure 4.2. Manipulation functionalities for

Date&Time objects.

Chapter 4: Date&Time Manipulation

55

4.2. How to produce a Date&Time Column

How can we generate a Date (or Time, Date & Time, Date & Time with zone) type data column?

There are many possibilities to do that. A “DB Reader” node, for example, automatically reads

a SQL timestamp field into a Date&Time column. Another possibility is to read in a String data

column, for example with a “File Reader” node, and then convert it into a Date&Time type. This

section explores the “String to Date&Time” and “Date&Time to String” conversion nodes.

String to Date&Time

The “String to Date&Time” node converts a String cell into a Date&Time cell according to a

given format. The configuration window requires :

• The String column(s) containing the date/time objects to be converted. The column

selection is performed through an include/exclude column selection framework

• The option for the resulting column to replace the original String column (“Replace

selected column” option) or be appended to the input data table (“Replace selected

column” option and suffix for appended new column)

• The new column type (Date, Time, Date&Time, or Date&Time with zone) and locale to

express it

• The Date format to be used. Here you can choose from a number of pre-defined

Date&Time formats available in the “Date format” menu; or you can edit the Date&Time

format manually; or you can let the node guess the Date&Time format through the button

“Guess data type and format”)

• A check box that indicates whether reading errors are tolerated or not. If checked, the

node will fail on errors.

Note. All Date&Time nodes support multiple columns. Columns can be easily included or

excluded in the options using manual selection or wildcard/regex selection.

Chapter 4: Date&Time Manipulation

56

In order to show the tasks implemented by these and more nodes in the “Time Series” sub-

category, let’s create a new workflow, to be named “DateTime_Manipulation”. In the newly

created workflow, we use a “File Reader” node to read the “sales.csv” file from the KALdata

folder. The “File Reader” node does not automatically assign the Date&Time type to date and

time values. It just reads them in as String. Before proceeding with more complex

manipulations, let’s convert the “date” column from the default String to the Date&Time type by

using a “String to Date&Time” node. For that, after the “File Reader” node, a “String to

Date&Time” node has been introduced to convert the “date” column from the String type to the

Date type according to “dd.MM.yyyy” format. In fact, the dates contained in the data column

“date” are formatted as “dd.MM.yyyy” and should then be read with that format.

In the configuration window of the “String to Date&Time” node, we also opted to replace the

original String column with the new Date&Time column.

After executing the node, the resulting data table should be as shown in the following, where

the data column “date” is now of Date type. The little icon showing a calendar and a clock

indicates a Date&Time type.

Figure 4.3. Configuration window of the String to Date&Time node.

Chapter 4: Date&Time Manipulation

57

Finally, we wrote the new data table with the Date Type column into a CSV file, with a “CSV

Writer” node. If instead of writing to a CSV file we want to save the new data table into a

database with a “DB Writer” node, we can make use of the type mapping framework to

efficiently map the desired date&time format.

Sometimes, in contrast, it might be

necessary to convert a Date&Time column

into a String column. The “Date&Time to

String” node walks the data in the opposite

direction to the “String to Date&Time”

node. In the “DateTime_Manipulation”

workflow, we introduced a “Date&Time to

String” node to convert the Date&Time

column “date” back to a String type with

format “yyyy/MM/dd”.

Date&Time to String

The “Date&Time to String” node converts a Date&Time cell into a String object according to a

given Date&Time format. The configuration window requires:

• The Date&Time type column(s) to be converted into String type

• The option for the resulting column to replace the original String column (“Replace

selected column” option) or be appended to the input data table (“Replace selected

column” option and suffix for appended new column)

• The format to build the String pattern

o A number of pre-defined Date&Time formats are available in the “Date format” menu

o The “Date format” box can be edited manually in order to create the required

Date&Time format, if the one you want is not available in the menu

o The locale to express the Date&Time object

Figure 4.4. Column "date" after the conversion to DateTime with the String to Date&Time node.

Figure 4.5. The upper part of the "DateTime_Manipulation"

workflow.

Chapter 4: Date&Time Manipulation

58

Another way to create a Date&Time type column is to use the “Create Date&Time Range” node.

This node generates a number of equally spaced date, time, or date and time values. You can:

• set the number of values, the starting point in time, and the ending point in time, and

calculate the corresponding interval between values

• set the number of values, the starting point, and the interval size, and calculate the

corresponding end point in time

• set the interval, the starting point, and the end point and calculate how many values to

generate.

Create Date&Time Range

The “Create Date&Time Range” node creates a number of Date&Time values from a start point

in time to an end point in time. Values are equally spaced. This means that you set the number

of values, the start, and the end and determine the interval; or set the number of values, the

interval, and the start, and determine the end; or set the interval, the start, and the end, and

determine the number of points.

Figure 4.6. Configuration window of the Date&Time to String node.

Chapter 4: Date&Time Manipulation

59

The configuration window requires :

• The output column containing the

new values: name and type

• The starting and end points in

time. These two points will have

the same format as defined for

the new output column: just Date,

just Time, Date&Time, or

Date&Time with zone

• One of the three strategies to

generate the values: a fixed

number of rows or a variable

number of rows.

o If you have selected a fixed

number of rows, also select

the starting point and then

the end point or the interval

o If you have selected a

variable number of rows,

then select the starting point,

the end point, and the

interval size. Interval size

can be either: time or date ISO-8601 based representation, short letter representation

(e.g. '2y 3M 1d'), or long word representation (e.g. '2 years 3 months 1 day')

o As a special for an end date, there is the current execution time. This can turn out to

be useful to generate timestamps.

ISO-8601 uses H for hours, m for minutes, s for seconds, d for days, M for months, y for years,

e.g. '2y 3M 1d' means an interval of 2 years 3 months and 1 day.

In the same workflow named “DateTime_Manipulation”, we introduced a “Create Date&Time

Range” node to generate n Date&Time type values between Jan 1, 2009, 12:37 and Jan 1, 2011,

13:37 spaced equally spaced as 1 month and 1 day. The total number of rows generated by

this node was then 24.

Figure 4.7. Configuration window of the Create Date&Time Range

node.

Chapter 4: Date&Time Manipulation

60

4.3. Refine Date&Time Values

To each one of these Date&Time values we decided to change time to 15:00. The node that

generally changes time is the “Modify Time” node. This node works only on time. It can append

a preset time value if none is present, change the current time value to a preset time value, or

remove the current time value in the data cell.

Now we could move all Date&Time values one day ahead. That is we would like to add +1 day

to all Date&Time values we have created. The node that adds and subtracts a duration from a

Date&Time value is the “Date&Time Shift” node. The duration can be expressed as a number

for a given granularity, like n days or k months, or as a duration value according to the ISO-8601

date and time duration standards.

Modify Time

The “Modify Time” node modifies

the time value in a data cell by:

• Appending a preset time value

• Changing current time value

with a preset time value

• Removing current time value.

The configuration window requires:

• The column(s) on which to

modify the time. Columns are

selected via an

Include/Exclude column

selection framework.

• Whether to replace the

selected input column or to

create a new one to append to

the input data table

• The modification strategy: “Append”, “Change”, “Remove”

• In case of “Append” or “Change”, the preset time value

• In case of “Append” also the time zone to associate to the new time value.

Figure 4.8. Configuration window of the Modify Time node.

https://docs.oracle.com/javase/8/docs/api/java/time/Period.html#parse-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

Chapter 4: Date&Time Manipulation

61

Date&Time Shift

The “Date&Time Shift” node shifts

a Date&Time value of a defined

amount. The configuration window

requires:

• The input Date&Time

column(s) to shift. Those are

selected via an

Include/Exclude framework.

• Whether to create a new

Date&Time column and

append it to the input data

table or to replace the

selected input column. The

suffix for the appended

columns can be provided in

the text field to the right.

• The shift value expressed as

duration or as number:

o Use Duration:

Duration column. Takes

the shift value from a

String input columns.

Duration value. Adds/substracts this constant shift value. The String duration value

can be either an ISO-8601 representation of date and time, a short letter

representation (e.g. '2y 3M 1d'), or a long word representation (e.g. '2 years 3 months

1 day')

o Use Numerical:

Numerical column. Takes the shift value from a numerical input column. A positive

value will be added to the reference date or time, a negative one subtracted from it.

Numerical value. Adds/subtracts this constant shift value. In case “Numerical Value”

option is selected, Granularity defines the shift value granularity (day, hour, month,

week, etc…).

Positive and negative shift values are possible to move forward and backward in time.

Figure 4.9. Configuration window of the Date&Time Shift node.

Chapter 4: Date&Time Manipulation

62

In this section we have shown only two

Date&Time nodes to change Date&Time

values. There are many more. For

example, similarly to the “Modify Time”

node, a “Modify Date” and Modify Time

Zone” node are available.

The figure on the right shows the lower

part of the “DateTime_Manipulation”

workflow as developed in this section.

4.4. Row Filtering based on Date&Time Criteria

Let’s dive deeper now into Date&Time manipulation. Very often a data analysis algorithm needs

to work on the most recent data or on data inside a specified time window. For example,

balance sheets usually cover only one year at a time; the results of an experiment can be

observed inside a limited time window; fraud analysis runs on a daily basis; and so on. This

section shows a number of row filtering operations based on date/time criteria.

The most common Date&Time based data selection is the one extracting a time window. This

kind of data row filtering requires setting explicit initial and final date/time objects. Only the

data rows falling inside this time window are kept, while the remaining data rows are filtered

out. The “Date&Time-based Row Filter” node performs exactly this kind of row filtering based

on the explicit definition of a time window.

In order to show practically how such time based filtering criteria can be implemented, we used

the “File Reader” node to read the “sales.csv” file from the KALdata folder in a new workflow,

named “DateTime_Manipulation_2”. After the “File Reader” node, a “String to Date&Time” node

converted all String type dates to Date&Time objects. Then a “Date&Time-based Row Filter”

node was introduced to select all sales that happened in a pre-defined time range. For the time

range we used “2009-01-01” and “2011-01-01”. We set these dates as starting and end points,

respectively, in the configuration window of the “Date&Time-based Row Filter” node and we

obtained a data set with 37 sales data rows at the output port, covering the selected 2-year

time span.

Date&Time-based Row Filter

The “Date&Time based Row Filter” node implements row filtering based on a time window

criteria. In fact, it keeps all data rows from the input data table inside a pre-defined time

window.

Figure 4.10. The lower part of the "DateTime_Manipulation"

workflow.

Chapter 4: Date&Time Manipulation

63

The configuration window requires :

• The input Date&Time column to which the filtering criterion should apply

• The time window, i.e.:

o The time window starting point, in terms of date and/or time

o The time window end point, in terms of date and/or time. It is possible to assign the

end of the time window using a duration formatted String (according to ISO-8601

date and time duration standards) or a numerical value with its granularity (days,

months, …)

o Execution time can be used as a starting point and as an end point for the time

window

o The “Inclusive” flag includes the extremes or the time window in the filter criterion.

Let’s suppose now that the year 2010 was a troubled year and that we want to analyze the data

of this year in more detail. How can we isolate the data rows with sales during 2010? We could

convert the “date” column from the Date&Time type to the String type and work on it with the

Figure 4.11. Configuration window of the Date&Time-based Row Filter node.

Chapter 4: Date&Time Manipulation

64

String Manipulation node. There is, of course, a much faster way with the “Extract Date&Time

Fields” node.

The “Extract Date&Time Fields” node decomposes a Date&Time object into its components. A

date can be decomposed into year, month, day number in month, day of the week, quarter to

which the date belongs, and day number in year. A time can be decomposed in hours, minutes,

seconds, and milliseconds. Here are some examples:

Date Year Month
(no)

Month
(text)

Day Week day
(no)

Week day
(text)

Quarter No of day in
year

26.Jun.2009 2009 6 June 26 6 Friday 2 177

22.Sep.2010 2010 9 September 22 4 Wednesday 3 265

Time Hours Minutes Seconds Milliseconds

15:23:10.123 15 23 10 123

04:02:56.987 4 2 56 987

Extract Date&Time Fields

The “Extract Date&Time Fields” node extracts the components (fields) of a Date&Time object.

The configuration window requires:

• Column Selection. A Date, a Time, a Date Time, or a Zoned Date Time column whose fields

to extract.

• Date Fields. Pick and choose which fields to extract (year, week, hour, time zone name ...)

• The locale. This sets the locale to express the output Strings

Note. The “Extract Date&Time Fields” node is particularly useful when combined with data

aggregation nodes (“GroupBy”, “Pivot”, etc.)

Chapter 4: Date&Time Manipulation

65

In the “DateTime_Manipulation_2” workflow, we introduced an “Extract Date&Time Fields” node

after the “Date&Time-based Row Filter” node. The configuration settings were set to extract

year, month (name), day of week (name), and day number in the month from each Date&Time

cell in the column named “datedate_time”.

The month and the day of week can be represented numerically, from 1 for January to 12 for

December and from 1 for Sunday to 7 for Saturday, or as text strings with the full month and

weekday name. We selected a text result for both the month and the day of week component.

The data table at the output port, thus, had 11 columns, 4 more than the original 7 columns.

The 4 additional columns are: “Year”, “Month”, Day of month”, and “Day of week (name)”.

In order to isolate the 2010 sales, we added a “Row Filter” node after the “Extract Date&Time

Fields” node in the “DateTime_Manipulation_2” workflow to keep all rows with “Year” = 2010.

The resulting data table had all rows referring to sales performed in 2010. Similarly, we could

have summed up the sale amounts by month with a “GroupBy” node to investigate which

months were more profitable and which months showed a sale reduction across the 2 years,

2010 and 2011. Or we could have counted all sales by weekday to see if more sales were made

Figure 4.12. Configuration window of the Extract Time Window node.

Chapter 4: Date&Time Manipulation

66

on Fridays compared to Mondays. The decomposition of date and time opens the door to a

number of pattern analysis and exploratory investigations over time.

Let’s suppose now that we only want to work on the most recent data, for example on all sales

that are not older than one year. We need to calculate the time difference between today and

the sale date to exclude all rows with a sale date older than one year. The “Date&Time

Difference” node calculates the time difference between two Date&Time values. The two

Date&Time values can be:

• two Date&Time cells on the same row,

• one Date&Time cell and the current execution date/time,

• one Date&Time cell and a fixed Date&Time value,

• or finally one Date&Time cell and the corresponding Date&Time cell in the previous row.

The time difference can be calculated in terms of days, months, years, etc., even milliseconds.

Date&Time Difference

The “Date&Time Difference” node calculates the time elapsed between two Date&Time values.

The configuration window requires :

• The input column to use for the first Date&Time values

• The second Date&Time value, that is:

o another Date&Time value in the same data row (Use “second column” option). In this

case the name of the second column is required.

o the current date/time at execution (Use “current execution date&time” option)

o a fixed date/time (Use “fixed date&time” option). In this case the fix Date&Time value

is required.

o the Date&Time cell in the previous row in the same column (Use “previous row”

option)

• The output options:

o Granularity to output the difference in number of days, months, years, etc.

o Duration to express the difference as date-based or time-based duration, according

to ISO-8601 date and time duration standards

o Name of the output column

Chapter 4: Date&Time Manipulation

67

In the “DateTime_Manipulation_2” workflow, we connected a “Date&Time Difference” node to

the “File Reader” node to calculate the time elapsed between today (“Current execution

date&time” option) and the Date&Time values in the “date” column, i.e., to calculate how long

ago the sale contract was made. We selected “month” for the granularity of the time difference,

i.e., the measure of how old a sale is, is expressed in number of months. The resulting

differences were appended to a column named “time_diff”. Sales older than one year had a

“time_diff” value larger than 12 months. We then used a “Row Filter” to filter out all rows where

“time_diff” > 12 months.

Another interesting application of the “Date&Time Difference” node is to calculate the time

intervals between one sale and the next. This is helpful to see if the sale process improves with

time or after some special event, for example some marketing initiative. In this case we need

to sort the sale records by sale date with a “Sorter” node. The “Sorter” node can manage

Date&Time types and can sort them appropriately. After that, we use a “Date&Time Difference”

node, and we configure it to calculate the time difference between the sale date in the current

row and the sale date in the previous row in terms of days. The resulting column “time_diff”

contains the number of days between one sale and the previous one. A simple line plot of the

“time_diff” column can give us interesting insights into the dynamics of the sale process.

Notice that we used two nodes: the simple Line Plot node and the Line Plot (Plotly) node. They

perform the same task, i.e., they plot a line for the data. However, the Line Plot (Plotly) node

integrates the line plot from the Plotly libraries.

Figure 4.13. Configuration window of the Time Difference node.

https://plotly.com/

Chapter 4: Date&Time Manipulation

68

4.5. Moving Average and Aggregation

In the “Other Data Types”/“Time Series”/”Smoothing” sub-category you also find a node that is

more oriented towards time series analysis rather than just Date&Time manipulation: this is the

“Moving Average” node.

The “Moving Average” node calculates the moving average4 on a time series stored in a column

of the input data table. The moving average operates on a k-sample moving window. The k-

sample moving window is placed around the n-th sample of the time series. An average

measure is calculated across all values of the moving window and replaces the original value

of the n-th sample of the time series. Then the moving window moves over to the next (n+1)-th

sample of the time series, and so on.

A number of slightly different algorithms can produce slightly different moving averages. The

differences consist of how the moving window is placed around the n-th sample and how the

average value is calculated. Thus, two parameters are particularly important for a moving

average algorithm:

• The position of sample n inside the k-sample moving window

• The formula to calculate the average value of the moving window

The moving average algorithm is called:

• Backward, when the n-th sample is the last one in the moving window

• Center, when the n-th sample is in the center of the moving window (in this case size k

must be an odd number)

• Forward, when the n-th sample is at the beginning of the moving window

• Cumulative, when the whole past represents the moving window; in this case is n=k

• Recursive, when the new value of the n-th sample is calculated on the basis of the (n-1)-

th sample

4 NIST/SEMATECH, “e-Handbook of Statistical Methods”,

(http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm)

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4.htm

Chapter 4: Date&Time Manipulation

69

If v(i) is the value of the original sample at position i inside the k-sample moving window, the

algorithm to calculate the average value for the n-th sample can be one of the following:

Algorithm Formula Notes

simple

average

measure

𝑎𝑣𝑔(𝑛) =
1

k
∙ ∑ v(i)𝑘

𝑖=0

gaussian

weighted

average

measure

𝑎𝑣𝑔(𝑛) =
1

k
∙ ∑ w(i) ∙ v(i)𝑘

𝑖=0

Where w(i) is a

Gaussian centered

around the nth

sample, whose

standard deviation

is
𝑘−1

4

harmonic

mean

𝑎𝑣𝑔(𝑛) =
𝑛

∑
1

v(n+i−
k−1

2)

𝑘−1

𝑖=0

The harmonic mean

can only be used for

strictly positive v(i)

values and for a

center window.

simple

exponential

𝑎𝑣𝑔(𝑛) = 𝐸𝑀𝐴(𝑣, 𝑛) = α ∙ v(n) + (1 − α) ∙ 𝑠𝑖𝑚𝑝𝑙𝑒_𝑒𝑥𝑝 (n − 1)

𝑠𝑖𝑚𝑝𝑙𝑒_exp (0) = 𝑣(0)

Where: 𝛼 =
2

𝑘+1
 and

v = v(n)

double

exponential

𝑎𝑣𝑔(𝑛) = 2 ∙ 𝐸𝑀𝐴(𝑣, 𝑛) − 𝐸𝑀𝐴(𝐸𝑀𝐴(𝑣, 𝑛), 𝑛)

triple

exponential
𝑎𝑣𝑔(𝑛) = 3𝐸𝑀𝐴(𝑣, 𝑛) − 3𝐸𝑀𝐴(𝐸𝑀𝐴(𝑣, 𝑛), 𝑛) + 𝐸𝑀𝐴(𝐸𝑀𝐴(𝐸𝑀𝐴(𝑣, 𝑛), 𝑛), 𝑛)

old

exponential

𝑎𝑣𝑔(𝑛) = 𝐸𝑀𝐴𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑣,𝑛)

= α ∙ v(n) + (1 − α) ∙ 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑_𝑠𝑖𝑚𝑝𝑙𝑒(n − 1)

Where: 𝛼 =
2

𝑘+1
 and

backward_simple(n)

is the simple

average of the

moving window with

the n-th sample at

the end.

Based on the previous definitions, a backward simple moving average replaces the last sample

of the moving window with the simple average; a simple cumulative moving average takes a

moving window as big as the whole past of the n-th sample and replaces the last sample (n-th)

Chapter 4: Date&Time Manipulation

70

of the window with the simple average; a center Gaussian moving average replaces the center

sample of the moving window with the average value calculated across the moving window

and weighted by a Gaussian centered around its center sample; and so on. The most commonly

used moving average algorithm is the center simple moving average.

Moving Average

The “Moving Average” node calculates the moving average of one or more columns of the data

table. The configuration window requires:

• The moving average algorithm

• The length of the moving window in number of samples

• The flag to enable the removal of the original columns from the output data table

• The input data column(s) to calculate the moving average

The selection of the data column(s), to which the moving average should be applied, is based

on an “Exclude/Include” framework.

• The columns to be used for the calculation are listed in the “Include” frame on the right

• The columns to be excluded from the calculation are listed in the “Exclude” frame on the

left

To move single columns from the “Include” frame to the “Exclude” frame and vice versa, use

the “add” and “remove” buttons. To move all columns to one frame or the other use the “add

all” and “remove all” buttons.

A “Search” box in each frame allows searching for specific columns, in case an excessive

number of columns impedes an easy overview.

Note. If a center moving average is used, the length of the moving window must be an odd

number. The first (n-1)/2 values are replaced with missing values.

Chapter 4: Date&Time Manipulation

71

In the “DateTime_Manipulation_2” workflow we applied a “Moving Average” node to the output

data table of the “File Reader” node. The center simple moving average was applied to the

“quantity” column, with a moving window length of 11 samples. A “Line Plot” node placed after

the “Moving Average” node showed the smoothing effect of the moving average operation on

the “quantity” time series (Figure 4.16).

The “Moving Aggregation” node extends the “Moving Average” node. Indeed, it calculates a

number of additional statistical measures, besides average, on a moving window. In the

configuration window you need to select the data column, the statistical measure to apply, the

size and type of the moving window, and a few preferences about the output data table

structure. Many statistical and aggregation measures are available in the “Moving Aggregation”

node. They are all described in the tab “Description” of the configuration window.

Moving Aggregation

The “Moving Aggregation” node calculates statistical and aggregation measures on a moving

window. The “Settings” tab in the configuration window requires:

• The statistical or aggregation measure to use

• The input data column for the calculation

• The type and size of the moving window

Figure 4.14. Configuration window of the Moving Average node.

Chapter 4: Date&Time Manipulation

72

• Checkboxes for the output data table format

• The checkbox for cumulative aggregation

A second tab, named “Description”, includes a description of all statistical and aggregation

measures available for this node.

Note. Selecting data column “amount”, aggregation measure “mean”, window type

“Central”, and window size 11, the same output time series is generated as by the “Moving

Average” node as configured above.

Finally, when checking the “Cumulative computation” checkbox, the “Moving Aggregation”

node uses the whole time series as a time window and performs a cumulative calculation. The

most common cumulative calculation is the cumulative sum used in financial accounting for

year to date measures.

Figure 4.15. Configuration window of the Moving Aggregation node.

Chapter 4: Date&Time Manipulation

73

In the “DateTime_Manipulation_2” workflow, we added a “Moving Aggregation” node to the

output data table of the “File Reader” node. The cumulative sum was calculated for the

“amount” data column, over the whole time series. The plot of the resulting time series is

obtained through a “Line Plot” node.

Note. The “Fast Fourier Transform (FFT)” node implements the Fast Fourier Transform of

a signal. The node is part of the “AI.Associates Signal Processing Nodes” extension under

“KNIME Community Contributions – Other”.

Figure 4.16. Moving Average effect on time series "quantity".

Figure 4.17. Cumulative Aggregation of time series "amount".

Chapter 4: Date&Time Manipulation

74

Figure 4.18. The "DateTime_Manipulation_2" workflow.

Chapter 4: Date&Time Manipulation

75

4.6. Time Series Analysis

KNIME Analytics Platform also offers some components for time series analysis. All of them

rely on one simple node: the Lag Column node. The Lag Column node is the key node for time

series analysis.

Lag Column

The Lag Column node copies a data column x(t)

and shifts it: n times 1, 2, …, n step each time or

one time only p steps down. It can work in three

different ways, producing:

• one copy shifted p steps x(t), x(t-p)

• n copies, each shifted 1, .. n steps resp.

x(t), x(t-1), …, x(t-n)

• n*p copies, each shifted p*(1, …n) steps

x(t), x(t-p), x(t-p*2), … x(t-p*n)

Where p is the “Lag Interval” and n the

“Lag” value.

The data column to shift, the Lag, and the Lag

Interval are then the only important

configuration settings required.

Two more settings state whether the first and last incomplete rows generated by the shifting

process have to be included or removed from the output data set.

Note. If the column values are sorted in time ascending order, shifting the values up or down

means shifting the values in the past or in the future. Vice versa if sorted in time descending

order.

Other nodes, dedicated to the analysis of time series, can be found in the KNIME Examples

space on the Community Hub in the 00_Components > Time Series folder, and the Lag node is

now also a part of KNIME Base nodes. This folder hosts some special nodes, named

components, each one implementing one of the many steps required in time series analysis.

Some of these components rely on Python libraries and therefore they require setting up the

KNIME Python extension. We will see more about components in the next chapter. For now,

however, it is enough to know that they behave as regular nodes. To create an instance of the

Figure 4.19. Configuration window of the Lag Column

node.

https://www.knime.com/blog/how-to-setup-the-python-extension

Chapter 4: Date&Time Manipulation

76

node, just drag & drop them from the KNIME Community Hub into the workflow editor. Then

configure their settings via the usual configuration window, and finally execute them. They will

present the results at their output port.

When you create a component in your workflow, this is just a link to the component template

residing in the KNIME Examples space. Every time you open the workflow, with this link to the

component, you will be asked if you want to look whether a new version of this same

component has been uploaded to the repository in the meantime.

Notice the node “Aggregation Granularity” for time aggregation, the node “Inspect Seasonality”

to extract the lag value for the dominant seasonality in the input time series; the node “Remove

Seasonality” feeding from the Lag Value of the node “Inspect Seasonality” and removing the

seasonality for that lag, the node “Return Seasonality” to rebuild the predicted signal from the

residual predictions, the “ARIMA Learner” and “ARIMA Predictor” nodes to train an ARIMA

Figure 4.20. The "00_Components/Time Series" category on the public EXAMPLES Server.

Chapter 4: Date&Time Manipulation

77

model and to apply it respectively. Keep an eye on this folder, because it is being constantly

filled with new and updated nodes.

As an example, in the workflow “Time_Series_no_flowvars”, we read the file “website.txt” from

the KALdata folder containing the daily number of visitors to a website. We want to predict the

next day's number of visitors given the number of visitors in the past N days, for N=3, 5, 7.

After reading the data, we clean up the dataset and we order it by date in ascending order. After

that, we partition the data. Notice that, in order to avoid data leakage, data partitioning for time

series is performed from the top: the past is for the training set and the future is for the test

set. They should not mix. After these preliminary steps, let’s start to deal with seasonality.

Seasonality and trend are a big issue in time series analysis, since can make the work too

complicated for the upcoming predictive algorithms. It is good practice to detect the

seasonality in the time series and, if any, to remove it before training the model. The component

“Inspect Seasonality” calculates the AutoCorrelation Function(ACF) for lagged copies of time

series through the Pearson Correlation for lags between 0 and a maximum lag, using a pre-

define lag step. It then detects the first local maximum of correlation for sign of dominant

seasonality, if any above the cut-off value defined in the node settings. The node produces, at

the output port, the sequence of local ACF maxima and their corresponding lag value. The lag

value for the highest maximum in this sequence is the lag for the dominant seasonality.

Additionally, the component produces an interactive view that displays the Autocorrelation

Function (ACF) Plot and Partial Autocorrelation Function (PACF) Plot.

Figure 4.21. The "Time_Series_noflowvars" workflow.

Chapter 4: Date&Time Manipulation

78

From the list of ACF maxima in the output data table of the “Inspect Seasonality” component,

we see the highest local maximum at lag = 7. Let’s remove this seasonality then from the

original column “no visitors”. To do that we apply the “Remove Seasonality” component to input

column “no visitors” and lag value 7. Notice that the seasonality index was calculated just on

the training set and that the seasonality was removed from both the training time series and

the test time series. The output table of the “Remove Seasonality” component contains the

original data column and the same data column without seasonality.

After removing the seasonality, we finally train the model. We could train and test an ARIMA

model with the ARIMA Learner and the ARIMA Predictor nodes. We could also pair a machine

learning regression algorithm with the Lag Column node to train the model on the past N

samples of the series to predict the next sample in the series. We trained a Linear Regression

model with N= 3, 5, and finally 7 past samples to predict the value of the sample in the time

series. Finally, the model is evaluated with a Numeric Scorer node.

To investigate visually how well the predictions of the time series values worked, we reinserted

the seasonality in both the time series “no visitors” that had been de-seasonalized earlier on

Figure 4.22.Original time series (green) vs. predicted time series (blue) using N= 3, 5, 7 previous

samples.

Chapter 4: Date&Time Manipulation

79

and into the predictions. Above you can see the line plots of the original time series and the

predicted time series when using N=3, 5, and 7 samples.

Of course, it is not necessary to calculate the seasonality lag and then manually insert it into

the “Remove Seasonality” component. This can all be done automatically using the flow

variables, as we will see in the next chapter.

4.7. Exercises

Create a workflow group “Exercises” under the existing “Chapter4” workflow group to host

the workflows for the exercises of this chapter.

Exercise 1

• Add a random date between 30. Jun. 2008 and 30. Jun. 2011 to the first 170 rows of the

“cars-85.csv” file;

• Remove the time;

• Write the new data table to a CSV file;

• If you consider the newly added dates as sale dates and the values in the “price” column

as sale amounts, find out which month and which weekday collects the highest number

of sales and the highest amount of money.

Solution to Exercise 1

The rows generated by the “Time Generator” node are only 170. The “Joiner” node is then set

with a “left outer Join” to keep all rows of the “cars-85.csv” file. The “CSV Writer” node writes a

file named “date_time_ex2.csv”.

Chapter 4: Date&Time Manipulation

80

Exercise 2

• Import the “date_time_ex2.csv” file produced in Exercise 1;

• Isolate the data rows with “date and time” older than one year from today (in the workflow

solution today’s date was “06.Apr.2011”);

• Calculate the amount of money (“price” column) made in each sale date (“date and time”

column);

• Apply a moving average algorithm to the time series defined in the previous exercise and

observe the effects of different sizes of the moving window.

Figure 4.23. Exercise 1: The workflow.

Chapter 4: Date&Time Manipulation

81

Solution to Exercise 2

Figure 4.25. Plots of the original time series, after a center simple moving average on 11 samples, and after a center

simple moving average on 21 samples.

Figure 4.24. Exercise 2: The workflow.

Chapter 4: Date&Time Manipulation

82

Figure 4.26. Settings for the "Date&Time Difference" node

in “Calc Time Difference” metanode.

83

Chapter 5: Flow Variables

5.1. What is a Flow Variable?

In KNIME Analytics Platform it is possible to define external parameters to be used throughout

the entire workflow: these parameters are called “Workflow Variables”, or shortly “Flow

Variables”, and can be string, integer, double, arrays, or Path values. Flow variable values can

be updated during each workflow execution though dedicated nodes and features. Therefore,

such parameters can be used to avoid manually changing settings within the nodes of a

workflow when a new execution with different settings is required.

Let’s create a workflow group called “Chapter5” to host the workflows implemented in the

course of this chapter. Let’s also create an empty workflow named “Flow_Vars” as its first

example workflow. First thing, we read the “sales.csv” file from the KALdata folder, then we

convert column “date” from type “String” to type “DateTime”, and finally we apply the

Date&Time-based Row Filter node to filter the rows with “date” between “01.Jan. 2009” and

“01.Jan. 2011”.

Figure 5.1. The configuration window of the Row filter node to find the sales

records where exactly 2 items have been sold.

Chapter 5: Flow Variables

84

On the remaining rows, we want to find all those sales where a given number of items

(“quantity” column) has been sold. For example, if we look for all sales, where 2 items have

been sold, we just use a Row Filter node using “quantity = 2” as a filtering criterion (see

configuration window above).

Now, let’s suppose that the number of sold items we are looking for is not always the same.

Sometimes we might want to know which sales sold 3 items, sometimes which sales sold 10

items, sometimes all we need to know is which sales sold more than n items, and so on. In

theory, at each run we should open the Row Filter node and update the filtering criterion. But

this is a very time-consuming approach, especially if more than one Row Filter node is involved,

and it is not well suited to a remote workflow execution on a KNIME Business Hub.

We can parameterize the pattern matching in the row filtering criterion by using a flow variable.

In this example, we could define a flow variable as an integer with name “number items” and

initial (default) value 2. We could then change the matching pattern in the filtering criterion in

the Row Filter node to take on the flow variable value rather than the fixed number set in the

configuration window. That is, we would like to have a filtering criterion like quantity =

“number items” rather than quantity = 2. At each workflow execution, the value of the

flow variable can be changed to retrieve only those sale records with the newly specified

number of sold items.

The following sections explore how to create and use flow variables.

5.2. Creating a Flow Variable

Flow variables are created locally inside the workflow and are available only for the

downstream nodes in the workflow. To create flow variables, you have the following

possibilities:

• Convert a table row into flow variables

• Export a node configuration as flow variable

• Use Configuration and Widget nodes

• Combine or modify existing flow variables

Let’s have a look at the different options in the following.

Suppose that we do not know the matching pattern for the filtering criterion ahead of time. In

other words, the matching pattern becomes known only during the workflow execution. Hence,

we need to create the flow variable “on the fly”. In our case, the flow variable will be created,

and its value will be assigned as soon as it becomes know.

Chapter 5: Flow Variables

85

Transform a Data Value into a Flow Variable

Let’s imagine that we want to analyze only the sale

records of the country with the highest total number of

sold items. To find out the total number of sold items

for each country, in the “Flow_Vars” workflow, we

connect a GroupBy node to the output port of the

Date&Time-based Row Filter node. The GroupBy node is

set to group the data rows by country and to calculate

the sum of values in the “quantity” column. A Sorter

node sorts the resulting aggregation by “sum(quantity)”

in descending order. Thus, the country reported in the

first row of the final data table is the country with the

highest number of sold items.

On another branch in the workflow, a Row Filter node

should retain all data rows where “country” is that

country with the highest number of sold items, as

reported in the first row of the output data table of the

Sorter node.

Depending on the selected time window, we do not

know ahead of time which country has the highest

number of sold items. Therefore, we cannot assign the

country name to a flow variable before running the

workflow. We should first find that country, then

transfer it into a flow variable, and finally use it to

execute the Row Filter node. The node that transfers data table cells into an equal number of

flow variables is the Table Row to Variable node. The Table Row to Variable node is located in

the category “Workflow Control” → “Variables”.

The “Workflow Control” category contains nodes that help to handle the data flow in the

workflow. In particular, the sub-category “Variables” contains a number of utility nodes to deal

with flow variables from inside the workflow, such as to transform data cells into variables and

vice versa.

The Table Row to Variable node takes a data table at the input port (black triangle), transforms

the data cells into flow variables, and places the resulting set of flow variables at its output port

(red circle).

Figure 5.2. The nodes in the “Workflow

Control” category that deal with flow

variables.

Chapter 5: Flow Variables

86

Table Row to Variable

The Table Row to Variable node requires the following

settings:

• a handling strategy if the field to be transformed

into a variable has a missing value. Such strategy

can be drastic, such as:

o fail the node execution or

o omit the creation of the variable

o or can be more tolerant and keep the node

running and still create the desired flow

variable. It just fills it with a fictitious value,

such as a fixed string value, or a number fixed

value

• the selection of the input fields to be transformed

into flow variables. This is achieved as usual via

an exclude/include frame.

Going back to the “Flow_Vars” workflow, we isolated

the “country” data cell of the first row in the output data

table of the Sorter node, by using an additional Row

Filter node to keep the first row only and a Column Filter

node to keep the “country” column only. The resulting

data table has only one cell containing the name of the

country with the highest number of sold items. This

one-cell data table was then fed into a Table Row to

Variable node and therefore transformed into a flow

variable named “country”.

Note. The output port of the Table Row to Variable node is a red circle. Red circle ports

carry flow variables either as input or as output. The node creates as many flow variables

as input columns, each flow variable carrying the name of the original input column. Also,

it only works on the first row of the input data table. If more than one row is presented to

the node, the newly created flow variables will take the values available in the first row of

the corresponding input columns.

Figure 5.3. Configuration window of the Table

Row to Variable node.

Chapter 5: Flow Variables

87

The list of flow variables available after the Table Row to Variable node can be seen by selecting

the last item of the node context menu. This view contains the flow variables available for

subsequent nodes. This includes all previously defined flow variables plus all the flow variables

created by the Table Row to Variable node itself.

The view shows the new “country” variable with value “USA” for this execution run and the

“RowID” variable which was also created by the Table Row to Variable node.

Export a Node Configuration as a Flow Variable

Let’s suppose now to have a data table containing

some values about specific countries. We simulated

that table with a Table Creator node with just one

column of values for the desired country (see figure

on the right). The column name is the country name.

We would like to extract all data rows for that country

from the original input data table from file sales.csv.

We should then use the column name as a matching

pattern in the Row Filter node. It is actually possible

to transfer the value of any configuration setting into

the value of a new flow variable.

The “Flow Variables” tab in each configuration

window shows two boxes close to each setting

name. One is the menu combo box that is used to overwrite the setting value with an existing

flow variable, the other box is a textbox and implements the opposite pass. That is, it creates a

new flow variable named according to the string in the textbox and containing the value of the

corresponding configuration setting.

In the Table Creator node, the column name is actually a configuration setting. So, in the “Flow

Variables” tab of its configuration window, we found the setting “columnProperties” > “0” >

“ColumnName” which corresponds to the column name of the column number 0 in the

Figure 5.4. Flow Variables available in the workflow "Flow_Vars" after the Table Row to

Variable node.

Figure 5.5. The Table Creator node configuration

window: the "Settings" tab.

Chapter 5: Flow Variables

88

configuration window of the Table Creator. We then decided to transfer this setting value into

a new flow variable named “var_country” () by filling the second textbox with the desired flow

variable name.

If we now check the output data table of the Table Creator node and we select the “Flow

Variables” tab, we see a new flow variable named “var_country” with value “Germany”, exactly

the name of column 0 in the Table Creator node.

Figure 5.6. The Table Creator node configuration window: The “Flow

Variables” tab.

Figure 5.7. Output Flow Variables of the Table Creator node in the "Flow_Vars"

workflow.

Chapter 5: Flow Variables

89

Configuration & Widget Nodes to Create Flow Variables

Another way to create a flow variable in the middle of a

workflow is to use a Configuration node. Configuration

nodes are located in the category “Workflow

Abstraction” → ”Configuration”, can create flow

variables, and provide interactive forms for a variety of

tasks. The simplest Configuration nodes to generate

flow variables are Boolean Configuration, Double

Configuration, Integer Configuration, and String

Configuration.

Configuration nodes can create a flow variable of a

specific type, with a name and a value. Since they do no

processing, they need no input. Thus, these nodes have

no input and just one output port of flow variable type

(red circle). They also share the same kind of

configuration window, requiring: the name and the

default value of the flow variable to be created,

optionally some description of the flow variable

purpose, and an explanation label to help the user for

the assignment of new values.

Let’s have a look again at the example workflow

“Flow_Vars” and particularly at the Row Filter node. We

can use a Configuration node to create a flow variable

containing the number of sold items for the filtering criterion called “num_items”. This flow

variable must be of type Integer to match the values in data column “quantity”. Hence, we use

an Integer Configuration node and configure is so that it produces a flow variable of type Integer

named “num_items”. We set the default value to 2.

The Boolean Configuration node, the Double Configuration node, and the String Configuration

node are structured the same way as the Integer Configuration node, with the only difference

that they produce flow variables of type Boolean, Double, and String respectively. For example,

if we now want to write the results of the filtering operation to a CSV file and if we want to

parameterize the output file path by using a flow variable of type String, we could use a String

Configuration node.

Configuration nodes can be assembled inside a component, which is a special type of

metanode. The component would then acquire a configuration window requiring the values of

the flow variables generated within it. You can learn more about that later on in this chapter.

Figure 5.8. The simplest "Configuration"

nodes to generate flow variables.

Chapter 5: Flow Variables

90

Integer Configuration

The Integer Configuration node creates a

new flow variable of type Integer, assigns a

default value to it, adds it to the list of

already existing flow variables, and presents

it at the output port.

Its configuration window requires:

• A label. This label will help the user

when updating the flow variable values

via the configuration window of the

component

• An optional description of the purpose

of this flow variable

• The flow variable name. This will also

be used as parameter name for

external identification, for example when running the workflow in batch mode

• The flow variable default value

• An integer range (Minimum and Maximum) to verify and accept valid values

5.3. Flow Variable Values as Node Settings

Once a flow variable has been created, it can be used to overwrite the settings in a node

configuration window. In our example, in the workflow named “Flow_Vars”, the flow variable

“country” overwrites the value of the matching pattern in the filtering criterion of the Row Filter

node.

In the configuration window of some nodes, a “Flow Variable” button is displayed on the side

of some of the settings. For example, you can find it in the Row Filter node, in the “matching

criteria” panel for the “use pattern matching” option, to the right of the “pattern” textbox (see

figure below).

Figure 5.9. Configuration window of the “Integer

Configuration” node.

Chapter 5: Flow Variables

91

The “Flow Variable” Button

The “Flow Variable” button allows you to use the value of a flow variable to overwrite the value

of the corresponding node setting.

By clicking the “Flow Variable” button, the “Variable Settings” window opens and asks whether:

• The value from an existing flow variable should be used for this setting. If yes, then:

o Enable the “Use Variable” flag

o Select one of the existing flow variables from the menu

o The value of the selected flow variable now defines the value of this setting at

execution

OR

• A new flow variable should be created with the current value of this node setting. In this

case:

o Enable the “Create Variable” flag

Figure 5.10. The "Flow Variable" button in the configuration window of the

Row Filter node.

Chapter 5: Flow Variables

92

o Provide a name for the new flow variable

o A new flow variable with the selected name and with that setting value is created and

made available to all subsequent nodes in the workflow

In the “Flow_Vars” workflow, we selected the existing

flow variable “country” – created in section 5.2 – to

overwrite the value of the pattern matching setting in the

Row Filter node named “country = "country" via pattern

matching criterion”.

You can check which flow variables are available at a

given point in a workflow by selecting the “Flow

Variables” tab in the Node Monitor. The “Flow Variables”

tab contains the full list of flow variables, with their current values, available for that node.

The “Flow Variables” Tab in the Configuration Window

Not all configuration settings display a “Flow Variable” button. The “Flow Variable” button has

been implemented for only some settings in some nodes. A more general way to overwrite the

value of a configuration setting through the value of a flow variable involves the “Flow

Variables” tab in the node’s configuration window. To access the “Flow Variables” tab, open

the configuration window of a node and select the “Flow Variables” tab.

Figure 5.11. The "Variable Settings" window.

Figure 5.12. The “Flow Variables” tab in the configuration

window of the Row Filter node.

Chapter 5: Flow Variables

93

The “Flow Variables” tab allows to overwrite each of the node configuration settings with the

value of a flow variable. Find the desired configuration setting and open the menu on the right

containing the list of available flow variables. Then simply select the respective flow variable

to overwrite the setting. At execution time, the node will assign the value of the selected flow

variable to that setting.

After defining the value of a configuration setting by means of a flow variable, a warning

message, characterized by a triangle, appears in the lower part of the configuration window.

The simple goal of this message is to warn the user that this particular parameter is controlled

by a flow variable and therefore changing its value manually within the configuration window

will be ineffective. In fact, if a configuration setting value has been set through a flow variable,

the flow variable value will always overwrite the current setting at execution time.

In order to make effective the manual change of the parameter value, the user needs to disable

the flow variable for this setting. This can be obtained by either disabling both options in the

“Variable Settings” window accessible through the “Flow Variables” button (Figure 5.11), or by

selecting the first empty option in the combo box menu in the “Flow Variables” tab of the

configuration window.

Note. In rare cases, it is still possible that some settings are not accessible even through

the “Flow Variables” tab.

Figure 5.13. The warning message indicating that a particular

parameter is controlled by a flow variable.

Chapter 5: Flow Variables

94

Inject a Flow Variable through the Flow Variable Ports

At this point, in our example workflow, we have four flow variables to feed a possible Row Filter

node:

• “country” which contains the name of the country with the highest number of sold items

• “var_country” which contains the name of the country in the reference table from the

“Table Creator” node

• “num_items” generated by the “Integer Configuration” node.

Let’s concentrate for now on the flow variable “country”. This flow variable is

at the output of the Table Row to Variable node. How do we make a Row Filter

node aware of the existence of this new flow variable? How do we connect

the Table Row to Variable node to the Row Filter node? We need to insert, or

inject, the new flow variables back into the workflow, to make them available

for all subsequent nodes.

All KNIME nodes have visible data ports and hidden flow variable ports which

become visible when you hover over the node with your cursor (two red circle

ports on the top). We use these flow variable ports to inject flow variables

from one node to the next or from one workflow branch to another.

Note. There are two flow variable ports: one port on the left to import flow variables from

other nodes and one port on the right to export flow variables to other nodes.

In order to inject flow variables into a node, connect the output variable port of the preceding

node to the input variable port (i.e., the left one of the two flow variable ports) of the current

node.

The “Flow Variables” tab in the Node Monitor contains the full list of available flow variables

and after injecting a new flow variable the list should include the newly created flow variable as

well as the flow variable that existed beforehand.

The flow variables injected into a node are only available for this and the subsequent nodes in

the workflow.

Note. Flow variable injection becomes necessary only when we need to transfer a flow

variable from one branch of the workflow to another or when we need to connect a flow

variable output port to the next node. In all other cases, new flow variables are automatically

transferred from one node to the next through the data flow (black triangle ports).

In “Flow_Vars” workflow, we first introduced a Row Filter node after the Table Row to Variable

node. Then, we connected the flow variable output port of the Table Row to Variable node to

Figure 5.14. The

flow variable ports

become visible

when you hover

over the node with

the cursor.

Chapter 5: Flow Variables

95

the input variable port (i.e., the flow variable port on the left) of the Row Filter node. As a result,

the flow variable named “country” became part of the group of flow variables available to the

Row Filter node and to the following nodes in the workflow. Finally, we configured the Row Filter

node to use the pattern matching filter criterion and the value of the flow variable “country” as

the matching pattern.

Note. Flow Variable ports can also be used as a barrier point to control the execution order

of nodes, i.e. nodes connected through a flow variable line will not start executing until all

upstream nodes have been executed.

Merge Variables

Sometimes we might want both flow variables, “country” and “var_country”, to be available to

a Row Filter node. In this case, we need to first merge the two (or more) flow variables from

different branches of a workflow before injecting them into the following node. This can be

done with the Merge Variables node.

The Merge Variables node merges flow variables into one stream. If flow variables with the

same name are to be merged, the standard conflict handling is applied: the topmost inputs

have higher priority and define the value of the post-merging variable. This node needs no

configuration settings.

5.4. Configurations, Widgets, Components

Let’s go back to that part of the “Flow_Vars” workflow that used a Configuration node (an

Integer Configuration node) to overwrite the value of the upper and lower bound of the range

checking criterion in the Row Filter node. Let’s add here a second Configuration node, a String

Configuration node, to define the name of the output CSV file where to write the row filtering

results.

Often workflows become quickly too crowded with too many nodes. In order to clean up the

workflow and collect together nodes belonging to the same logic unit, metanodes can be

introduced. Metanodes are nodes containing other nodes. To create a new metanode from a

set of existing nodes, select the nodes of interest, then right-click and select option “Create

metanode”. The metanode is automatically created including all selected nodes and with the

right number of input and output ports. Double-clicking a metanode opens its content.

An evolution of a simple metanode is a component. A component is a building block that can

have sophisticated dialogs and composite views. It can be created by selecting the nodes of

interest, right-clicking and selecting the option “Create component”.

Chapter 5: Flow Variables

96

• Ctrl-double-click on a component opens its content.

• If a component contains one or more Configuration nodes, it acquires a configuration

window, that is, the option “Configure” in the component context menu becomes active.

The configuration window is filled with the textboxes and menus from the Configuration

nodes in it.

• Similarly, if a component encloses JavaScript views, they become visible as composite

view of the component.

A component limits the input and output of flow variables in and out of the component. This

vacuum environment is useful against the quick proliferation of flow variables. Content

isolation ensures safer coding inside the component with lower risk of mixing up flow variables

and their values. It is still possible to import or export a flow variable into or out of a component,

if we set this explicitly.

In the workflow “Flow_Vars” we enclosed the Integer Configuration node and the String

Configuration node into a component named “Filter data rows and write results to output file”.

Ctrl+Double-click accesses its content (Figure 5.15).

You can see two gray nodes: the Component Input and the Component Output node. The

Component Input and the Component Output nodes in the component have a configuration

window. Double-clicking them opens their configuration window, which offers an

Include/Exclude framework to allow flow variables to enter or exit the component.

Figure 5.15. “Integer Configuration" and "String Configuration" nodes inside a component

to define the row filtering criterion and the output file path.

Chapter 5: Flow Variables

97

The component, shown in Figure 5.15, containing an Integer Configuration node and a String

Configuration node, produces the configuration window in Figure 5.17, requiring the output file

path and the integer value for the flow variable “num_items” controlling the Row Filter node.

Note. Unlike meta-nodes, double-clicking a component leads to its configuration window

and not the sub-workflow.

Figure 5.16. Configuration window of the “Component Input” node in the

component shown in Figure 5.15.

Figure 5.17. Newly acquired configuration window of the

component containing the "Integer Configuration" node and the

"String Configuration" node. The box to enter integer values

comes from the Integer Configuration node. The textbox to

insert the file path comes from the String Configuration node.

Chapter 5: Flow Variables

98

Another way of creating a new flow variable in a component is via the Widget nodes. Similar to

the Configuration nodes, they reside in the category “Workflow Abstraction”. Also, here we find

dedicated Widget nodes for different types of flow variables such as Boolean Widgets, String

Widgets and Integer Widgets. The key difference to the Configuration nodes is that Widget

nodes alter the view of a component (composite view) and not the configuration window. When

running on a KNIME Business Hub, each component produces a web page displaying the same

view as in the composite view of the component. We will talk about Widget nodes later in this

chapter.

5.5. Transform a Flow Variable into a Data Value

Sometimes it is necessary to use the flow variable values as data values. To transform flow

variables into data cells, we can use the Variable to Table Row node. The Variable to Table Row

node mirrors the Table Row to Variable node. That is, it transforms a number of selected flow

variables into cells of a data table.

Variable to Table Row

The Variable to Table Row node transforms selected flow variables at the input port (red circle)

into cells of a data table at the output port (black triangle). The configuration settings require

the selection of the flow variables to be included in the output data table through an

include/exclude panel.

The output data table contains two columns:

• One column with the name of the flow variable;

• The second column with the flow variable values at execution time.

In our example workflow, “Flow_Vars”, we connected a “Variable to Table Row” node to the

“Table Row to Variable” node, in order to perform the opposite operation and transform all

current flow variables into data cells.

Chapter 5: Flow Variables

99

5.6. Modifying Flow Variable Values

For the country with the highest number of sales, we now want to restrict the analysis scope to

only those records with a high value in the “amount” column. This requires an additional Row

Filter node implementing a filtering criterion on “amount” > x, where x is the threshold above

which an amount value is declared high.

Let’s suppose that different thresholds are used for different countries. For example, an

amount is considered high for a sale in USA if it lies above 500; it is considered high in other

countries if it lies above 100. In one case, we should set x = 500 and in the other cases

x = 100. Therefore, the threshold x cannot be set as the static value of a global flow variable.

Indeed, the flow variable value needs to be adjusted as the workflow runs.

There are a number of nodes dedicated to modifying the values in flow variables. They all mirror

existing nodes operating on data tables, like Java Snippet, Math Formula, Rule Engine, and

String Manipulation. The only difference of the variable edition with respect to the data edition

of these nodes consists in the input/output ports. The nodes operating on data get data as

input and produce data as output. The corresponding nodes operating on variables get

variables as input and produce variable as output. Besides that, the node configuration

windows mimic the configuration windows of the corresponding nodes working on data.

Figure 5.18. The configuration window of the Variable to Table Row node.

Chapter 5: Flow Variables

100

To complete our example workflow “Flow_Vars”, we

have added a few nodes for variable value

manipulation.

A “Rule Engine Variable” and a “Java Edit Variable” both

implement the task of creating the varying threshold x,

that is equal to 500 if variable “country” value is “USA”

and to 100 otherwise.

A “String Manipulation Variable” node transforms the

content of flow variable “country” from just the country

name to “Country: <country name>”. At the same time,

a “Math Formula Variable” node doubles the value of

flow variable “number items”.

Note. The type of the returned flow variable has to

be consistent with the return type of the Java/Rule

Engine/Math Formula/String Manipulation code.

Figure 5.19. Nodes modifying values in flow

variables. These nodes mimic the

corresponding nodes working on data. That

is, same configuration window, but variable

input and output ports rather than data ports.

Chapter 5: Flow Variables

101

Figure 5.20. Configuration window of the "Rule Engine Variable" node to create a

flow variable named "x" with value 500 if flow variable "country" is set to "USA" and

100 otherwise.

Figure 5.21. Configuration window of the "Java Edit Variable" node to create a flow

variable named "x" with value 500 if flow variable "country" is set to "USA" and 100

otherwise.

Chapter 5: Flow Variables

102

Note. Even though all these “… Variable” nodes have an input port for flow variables, this

port is often optional. That is, the nodes can also work without input, which makes them

ideal nodes to start a workflow without reading data.

5.7. More Configuration Nodes and Widget Nodes

In the remaining part of this chapter, we would like to explore some of the many options offered

by the nodes in the “Workflow Abstraction” category and the possibility to build composite,

complex, and organized views in components. In this section we concentrate on the nodes in

the “Configuration and “Widgets” category.

In the previous sections of this chapter, we have encountered two Configuration nodes: the

Integer Configuration node and the String Configuration node. Like all Configuration nodes,

these two nodes provide an input form to enter the flow variable value.

A component containing Configuration nodes acquires a configuration window, including the

input forms from the contained Configuration nodes. A similar, more complex, configuration

window could be displayed as a web page using Widget nodes instead of the Configuration

nodes.

Figure 5.22. The final workflow in “Chapter5/Flow_Vars”.

Chapter 5: Flow Variables

103

The Widgets category offers a wide choice of nodes

similar to the Configuration nodes, but with more

complex and flexible input forms, producing items in

web pages rather than in configuration windows. In

particular, the Integer Widget and String Widget nodes

are the corresponding nodes to the Integer

Configuration and String Configuration nodes.

In this section, we will explore two interesting and

widely used nodes from the Configuration and Widgets

categories: the Local File Browser Configuration node

(in Configuration) and the Value Selection Widget node

(in Widgets).

The Local File Browser Configuration node is used to

trigger the File Browser User Interface, to find, select,

and import the file URL as a flow variable. The

configuration window of the component therefore will

contain a “Browse” button to search for file. The file URL

variable should then be passed to a File Reader node

that reads and imports the data set from the file.

The Value Selection Widget node operates a selection

on the distinct values provided in the selected input

column. This Widget node produces a web page item

visible in the node view: a drop-down menu to select one

of available values in the input column.

Value Selection Widget

The Value Selection Widget node extracts a list of unique values from a column in the input

data table and loads them in a menu or a group of radio buttons for selection. The menu or the

radio buttons are displayed in the view of the node itself, in the view of the component where

the node has been included, and in the stepwise execution on the KNIME Business Hub.

A value needs to be selected from the input form. Then a flow variable is created containing

the selected value to be passed over to the subsequent part of the workflow. To configure the

node, we need at least:

• The type of input form, whether menu or radio buttons, to display in the node view,

component view, and the KNIME Business Hub from a web browser.

Figure 5.23. The "Workflow Abstraction"

category with expanded "Widgets" sub-

category.

Chapter 5: Flow Variables

104

• The name of the flow variable to create

• The name of the input column with the

list of unique values for the menu / radio

buttons

• Since the selected column can be

changed via the input form, the checked

“Lock Column” flag avoids that

• The default value for the flow variable

from the menu list; this value can be

changed via the input form

Optionally, it would help to have a description

of what this flow variable has been created

for, and a label that explains what is supposed

to be selected.

To display the node view, right-click the node

and in the context menu select the “Interactive

View: …” option. This visualizes a web page

containing the input form with the list of

values to choose from.

Local File Browser Configuration

The Local File Browser Configuration node explores the folder in the default file path, loads all

found files into a menu, allowing to select one. The node produces a flow variable containing

the URL of the selected file. The File Browser GUI is the input form produced by this node, visible

in the configuration window of the component that contains it.

Usually, this node is connected to a reader node, like a File Reader node, or to a writer node, like

a CSV Writer node, for importing/exporting a data table from/to a file. To configure the node,

we need:

• The name of the flow variable to create

• The default file path (it must be a valid path)

Optionally:

• The file extension to limit the number of files uploaded in the menu by their extension

• A description of the flow variable content

Figure 5.24. The configuration window of the Value

Selection Widget node.

Chapter 5: Flow Variables

105

• A label that instructs on what to select

Summarizing, Configuration nodes produce items for configuration windows and Widget nodes

items for web pages. When to use one or the other?

Figure 5.25. The configuration window of the Local File Browser

Configuration node.

Figure 5.26. Sub-workflow in component named “Select Country from list” with the Configuration and

Widget nodes: a “Local File Browser Configuration” and “Value Selection Widget”.

Chapter 5: Flow Variables

106

Note. Input forms in web pages from Widget nodes are required when the workflow has to

run on a web browser via the KNIME Business Hub. For a classic workflow execution within

a KNIME Analytics Platform instance, input forms produced by Configuration nodes are

sufficient.

In workflow “Composite_Views” under “Chapter5”, we

have introduced a Value Selection Widget node and a

Local File Browser Configuration node inside the

component named “Select Country from List”. The first

node adds a “Browse” button into the component

configuration window, the latter adds a dropdown menu

filled with country names in the component view.

Those two categories, Configuration and Widgets,

contain many other useful nodes. For example, the

Multiple Selection Configuration/ Multiple Selection

Widget and Single Selection Configuration/ Single

Selection Widget nodes in execution both present a list of values in a menu and allow for the

selection of one or more of them.

The Nominal Row Filter Configuration/ Nominal Row Filter Widget nodes work similarly to the

Value Selection Configuration/ Value Selection Configuration Widget nodes but return a table

with the one or more selected values instead of a flow variable.

The Column Selection Configuration/ Column Selection Configuration Widget nodes let the

user select a data column and transmit the name of the selected column to the following nodes

by means of a flow variable.

5.8. Composite View in Components

As we have stated already, components include input forms from internal Configuration nodes

in their configuration window. They also include views from internal JavaScript nodes in their

view window. Both input forms and views get displayed on a web browser via the KNIME

Business Hub during execution. So far, we have also seen that elements in the component’s

view and configuration window are arranged in a vertical sequence. It does not have to be just

vertical!

If you are more artistically inclined and would like to place the component’s items on a grid,

you can do so using the layout editor. Access the layout editor

• by right-clicking the component and select Component > Open layout editor, or

Figure 5.27. View of component “Select

Country from list”. The drop-down was

created by the “Value Selection Widget”.

Chapter 5: Flow Variables

107

• by opening the component (ctrl-double-click or right-click → “Component” → “Open”) and

clicking on the "Open layout editor" button in the toolbar (Figure 5.28).

The “Node Usage and Layout” window opens. In this window, items are organized on a grid.

Here you can place the input form or the view in the desired position in the view or configuration

window or web page.

There are many ways to place items in the layout grid of a component via the four tabs of the

“Node Usage and Layout” window.

• “Node Usage” sets whether the view or input form will be available in the component

configuration window (dialog) and/or in the component View.

• “Composite View Layout” provides a drag and drop layout solution. On the left, layout sub-

grids on a row are available: 1x1, 1x2, 1x3, or 1x4. Clicking on one of these sub-grids

automatically adds them to the layout. Via drag&drop, you can then place the views of the

Widget nodes and the forms of the Component nodes in any of the cells in the layout grid.

Notice the trash bin button in the top right corner of each cell to empty it of its content.

• “Advanced Composite View Layout” lets you place the items on the same view grid, but

via a JSON structure.

Figure 5.28. The Layout button in the tool bar of KNIME Analytics Platform. This button is enabled only when we are

inside a component.

Figure 5.29. The “Node Usage and Layout" window to arrange views and input forms

on a grid for a component.

Chapter 5: Flow Variables

108

In the workflow “Composite_Views”, the component named “Bar Charts side by side” contains

two bar charts built on the data of the file sales.csv. The two bar charts are built with two “Bar

Chart” nodes summing for each product once the number of sold items (“quantity”) and once

the money amount (“amount”). We wanted to have the two bar charts displayed side by side in

the component view. Thus, in the “Node Usage and Layout” window we placed the first chart in

the left cell and second chart in the right cell of the first row, as shown in the figure above.

Notice that all view nodes are connected. Selecting groups/points/data rows in one view,

automatically selects the same groups/points/data rows in the other view, if so set in the

configuration window and/or in the interactive menu of the view. In the figure above, selecting

the group of data for one product (“prod_1”) in one chart automatically selects the same group

of data in the other chart.

The last mention should go to a group of special nodes that offers control functions for charts

and plots in a composite view. We will show here just one for all the nodes of this type: the

“Interactive Range Slider Filter Widget” node.

The “Interactive Range Slider Filter Widget” node operates on numerical columns. It defines the

range allowed for the numbers displayed in the view of the upcoming JavaScript nodes. It also

produces a visual JavaScript item in the form of a slider to be used for the range definition. In

the view, changing the numerical range set in the slider, affects the number of records displayed

in the following charts and plots.

Interactive Range Slide Filter Widget

Interactive Range Slider Filter Widget” node defines the range of the numerical values to be

plotted by a subsequent JavaScript node.

Figure 5.30. View of the component named “Bar Chart side by side” containing two bar charts

generated by two “Bar Chart (JavaScript)” nodes. The two bar charts have been placed side by

side through the “Node Usage and Layout” window.

Chapter 5: Flow Variables

109

In the view it produces a slider item.

Changing the range in this slider, changes

the values displayed in the following chart

or plot.

The configuration window requires:

• The numerical column to apply the

range to.

• The minimum and maximum value for

the full range. Default values are

inherited from the column domain.

• The minimum and maximum value for

the range defined by the slider handle.

Again, default values are inherited

from the column domain.

• If you are using a cascade of slider

nodes, you can preserve the previous

settings and build on top of them, by

enabling the two merge checkboxes at

the top. You can keep the previous range filters either in the result table or in the model or

both.

• Optionally, an explanatory label can be added to clarify the range slider operation.

In our example workflow, named “Composite_Views”, we created a component, named

“Controlled Scatter Plot”, to contain a “Scatter Plot” node and a “Interactive Range Slider Filter

Widget” node. The scatter plot was set to display the sales input data in the (“amount”,

“quantity”) space. The slider was hooked to column “amount” to filter the displayed data points

in the plot. The first figure on the next page shows the view of the composite node, with all data

points plotted in the scatter plot, the second figure shows the same component view, showing

only those sales with “amount” lower than 482. This last range [3-482] has been manually

defined by moving the slider handle in the component composite view.

The sub-workflow contained in component “Controlled Scatter Plot” is shown in Figure 5.34.

Figure 5.31. The configuration window of the “Interactive

Range Slider Filter Widget” node.

Chapter 5: Flow Variables

110

We conclude here this chapter with a picture of the final workflow “Composite_Views”, showing

the component “Select Country from List” including “Local File Browser Configuration” and

“Value Selection Widget” nodes; the component “Bar Charts side by side” with the two bar

Figure 5.32. The view of the “Controlled Scatter Plot” component when the range for

“amount” is left as the original column range.

Figure 5.33. The view of the “Controlled Scatter Plot” component when the range for

“amount” is set to [3, 482] by the slider handle.

Chapter 5: Flow Variables

111

charts placed close to each other; the component “Controlled Scatter Plot” displaying a scatter

plot controlled by a slider item.

5.9. Components are for Sharing

If you have a particularly general component that encapsulates some logic or some data

operations that can be useful to more people than just yourself, you can easily share it, with

your future self, with colleagues, or with the whole KNIME Community.

Once you have a component, to make it into a sharable template, just right-click the component

and in the context menu select “Component” → “Share”. In the window that opens select the

destination for the component template.

• In LOCAL workspace, the component template will only be visible to you and your future

self;

Figure 5.34. The sub-workflow in component “Controlled Scatter Plot”. Notice the

“Interactive Range Slider Filter Widget” node feeding (and controlling) the data in the

“Scatter Plot” node.

Figure 5.35. The final workflow “Composite_Views”.

Chapter 5: Flow Variables

112

• on a KNIME Business Hub it will be visible to you and your colleagues who have access

to the same KNIME Business Hub;

• in the folder My-KNIME_Hub/Public in the KNIME Explorer it will be available for the whole

KNIME community to use and accessible via the KNIME Community Hub.

To reuse a component template into your workflow, just drag&drop it from wherever it is into

your workflow editor. A linked component will be automatically created, including the

composite view and the composite configuration window of the original component. Every time

you open the workflow, you will be prompted to check for updates in the component template

and possibly import them into the linked instance.

Note. A linked component is created in read-only mode. You cannot change its content until

you disconnect from the template and make your own local copy using the option

“Component” -> ”Disconnect Link” in the context (right-click) menu of the component.

We have used component templates in chapter 4, when using some of the time series

components contained in EXAMPLES/00_Components/Time Series. There we made just use

of the acquired configuration window of the components to set the right parameters for the

task, but we made no use of flow variables to make the parameter passing from component to

component easier. Indeed, the lag value, calculated in component “Inspect Seasonality”, is

presented at the top output port of the component, and could be easily passed to the next

Figure 5.36. Workflow “Time_Series_flowvars”. This is a revised version of workflow “Time_Series_noflowvars”

developed in chapter 4 using flow variable connections to pass the lag value from the “Inspect Seasonality”

component into the “Remove Seasonality” component.

https://hub.knime.com/

Chapter 5: Flow Variables

113

component “Remove Seasonality” with a flow variable connection, avoiding the manual setting.

The final workflow, taking advantage of flow variables, is shown in the figure above.

5.10. Exercises

Exercise 1

Read the file sales.csv from the KALdata folder.

Select sale records for a specific month and year, like for example March 2009, March 2010,

January 2009, January 2010 using flow variables for the month and the year values.

Solution to Exercise 1

To implement an arbitrary selection of data records based on month and year, we first applied

an Extract Date&Time Fields node and defined two flow variables, one for the year and one for

the month, using the Table Creator node followed by a Table Row to Variable node. Two Row

Filter nodes were then extracting the data rows with that particular month and that particular

year as indicated by the two workflow variables’ values.

Figure 5.37. Exercise 1: The workflow.

Chapter 5: Flow Variables

114

Exercise 2

Using the file cars-85.csv and build a data set with:

• The cars from the car manufacturer that is most present in the original data

• The cars from the car manufacturer that is least present in the original data

Put today’s date on every row of the new data set to identify the time of creation.

Solution to Exercise 2

To identify the most/least

represented car manufacturer in the

data, we counted the data rows for

each value in the “make” column

with a GroupBy node. We then

sorted the aggregated rows by the

count value in

descending/ascending order and

kept only the first row and only the

“make” column. To create the flow

variable, we used the Table Row to

Variable node, creating a flow

variable called “make”. Finally, we

used a Row Filter node to keep only

the rows with that value in the

“make” column.

To create today’s date, we used a

Java Edit Variable (simple) node and

appended it to the data set in a

column called “load_date” by means

of a Rule Engine node.

Note. A Java Snippet node could also write today’s date in the “load_date” column.

However, if you have more than one data set to timestamp, it might be more convenient to

use only one Java Edit Variable (simple) node rather than many Java Snippet nodes.

Figure 5.38. Exercise 2: Configuration window of the “Java Edit

Variable (simple)” node.

Chapter 5: Flow Variables

115

Exercise 3

Define a maximum engine size, for example 300, and put it into a flow variable named “max”.

Read the file cars-85.csv and build two data sets respectively with:

• All cars with “engine_size” between the maximum engine size defined (“max”) and its half

• All cars with “engine_size” between the half and a quarter of the original default value

The workflow must run with different values of the maximum engine size.

Solution to Exercise 3

Define “max” as an integer value using the Table Creator node and convert it into a flow variable

using the Table Row to Variable node.

Create the flow variables “max2” with the value
𝑚𝑎𝑥

2
 and “max4” with value

𝑚𝑎𝑥

4
 with two Math

Formula (Variable) nodes.

Configure two Row Filter nodes with “use range checking” as filter criterion and with the

appropriate flow variables in lower bound and upper bound to build the required data tables.

Figure 5.39. Exercise 2: The workflow.

Chapter 5: Flow Variables

116

Note. Remember to check the “Convert to Int” flag in the Math Formula (Variable) nodes.

The column “engine_size” is of type integer and then the Row Filter node sees only flow

variables of type integer.

Figure 5.40. Exercise 3: The workflow.

Figure 5.41. Exercise 3: Configuration window of the Math Formula (Variable)

node.

Chapter 5: Flow Variables

117

Exercise 4

Using the cars-85.csv file, build a component with the following configuration window to:

• select data rows with a specific body style

• replace missing values in a column 1 with values in the same data row in a column 2.

Limit the choice of columns to only String columns. For the missing value operation use the

Column Merger node.

Solution to Exercise 4

First, we read the data, and we extract all string columns with a Column Filter node. Then we

define all the parameters for the configuration window of the component with Configuration

nodes:

• A Value Selection Configuration node applied to the “body_style” column

• A Column Selection Configuration node to select column 1 to feed to the Column Merger

node

• A second Column Selection Configuration node to select the column 2 to feed to the

Column Merger node

Then, we configure a Column Merger node using the variables created for column 1 and column

2.

Figure 5.42. Exercise 4: The workflow.

Chapter 5: Flow Variables

118

Figure 5.43. Exercise 4: The component

configuration window.

Figure 5.44. Exercise 4: The sub-workflow in the component.

119

Chapter 6: Advanced Dashboards with
Composite Views

6.1. A few examples of Advanced Dashboards

In KNIME Beginner’s Luck (Chapter 6: Dashboards with Composite View) we built a dashboard

including a table for assigned money, a table for used money, and a table for remaining money

and the corresponding bar charts across all projects/years (see figure below).

This dashboard was good enough for at-a-glance observations and simple enough to build.

Years and projects were statistically represented in all three bar charts in shade of green.

However, with your newly acquired knowledge of flow variables from this book, in this chapter

we will change this static dashboard into a dynamic one or two. The goal of this chapter is to

show how to introduce advanced dashboard elements in the composite view to

• interactively select one or more attributes to draw in the charts

• make dynamic, real-time updates

Figure 6.1. The bar charts from the original simple dashboard in KNIME Beginner’s Luck (Ch. 6).

Chapter 6: Advanced Dashboards with Composite Views

120

• autocomplete text queries

• introduce custom option selection

• implement an animated bar chart via a community component

In particular, we will build two interactive dashboards and an animated bar chart.

After completing this chapter, you will have learned how to create 2 interactive dashboards and

an animated bar chart.

The first bar chart, named “Project Report: Money Flow” (figure below), introduces the concept

of interactive selection, by allowing us to select the attributes (money used, assigned, and

remaining) and the specific project for the bar chart. The workflow implementing this

dashboard is “Project Report 1: Filtering by Year and Project” found in the “Advanced

Dashboards” KNIME file.

The second dashboard, named “Advanced Money Flow with Text Autocompletion” (figure

below), builds upon the first dashboard by introducing real time update, text autocomplete, and

custom option selection. The workflow implementing this dashboard is called “Advanced

Dashboards”.

Figure 6.2. The first interactive dashboard of this chapter "Project Report: Money Flow".#

Chapter 6: Advanced Dashboards with Composite Views

121

Figure 6.3. The second interactive dashboard of this

chapter “Advanced Money Flow with Text

Autocompletion” found in the “Advanced

Dashboards” KNIME file.

Figure 6.4. The animated bar chart component creates a visualization where bars race over time,

increasing in range. This figure only captures a static image of the final chart.

Chapter 6: Advanced Dashboards with Composite Views

122

Finally, the last part of this chapter shows how to build

animated bar charts with a component template

available on the KNIME Community Hub. The

animated bar chart adds a splash of movement meant

to capture an audience’s attention. The workflow

implementing this dashboard is called “Animated Bar

Chart”.

So which nodes allow us to create such interactive

dashboards? Widget nodes. All Widget nodes are

available under Workflow Abstraction in the Node

Repository panel. Widget nodes implement an

interactive item in the composite view of a component

or in the web page.

You have previously used the Value Selection Widget,

the Text Output Widget and the Interactive Range

Slider Filter Widget in either KNIME Beginner’s Luck or

in previous chapters of this text.

In the following sections we will introduce you to more

widgets which allow for customization and dynamic

interactivity in composite views - especially for

advanced dashboards.

In each section we will introduce key widgets and

gradually build the objective interactive dashboards

as well as several simpler dashboards. Here are the

widgets we will cover in each section:

• 6.2 - Column Filter Widget

• 6.3 - Refresh Button Widget

• 6.4 - Nominal Row Filter Widget - at this point we can make dashboard 1

• 6.5 - Autocomplete Text Widget

• 6.6 - Single Selection Widget - at this point we can make dashboard 2

In section 6.7 we will introduce how to animate bar graphs by using a community component.

In section 6.8 we will touch the topic of Geospatial Analysis and introduce selected nodes of

the Geospatial Analytics Extension for KNIME, and finally, section 6.9 will propose two

exercises, one dealing with color palettes and the other with stacked area charts, to aid you in

building your own dashboards.

Figure 6.5. A list of Widget nodes found within

Workflow Abstraction in the Node Repository.

https://hub.knime.com/center%20for%20geographic%20analysis%20at%20harvard%20university/extensions/sdl.harvard.features.geospatial/latest/

Chapter 6: Advanced Dashboards with Composite Views

123

6.2. Interactively selecting one or more attributes to
represent in a chart

Let’s start from the composite view implemented in KNIME Beginner’s Luck (Figure 6.1). This

composite view was static, i.e., it was not possible to select the input columns to be displayed.

This made for a view with many elements and the inability to have the audience pay attention

to any one particular aspect of the graphics. In this section we want to add one control item to

allow for custom selection of the input attributes.

As shown in Figure 6.1, in the original dashboard the three bar charts were always shown. But,

by adding the ability to control which columns to represent, we can create simpler, easier-to-

parse graphics. We will do this by selecting our columns interactively using the Column Filter

Widget node.

Column Filter Widget

The “Column Filter Widget” node creates an interactive column filter selection menu for use in

component views. It takes a data table and returns a filtered data table with only the selected

columns.

The configuration window of the node does not require any special settings to be

configured/selected, besides the default filtering to show when opening the interactive view for

the first time.

Check the “Re-execution on widget value change” box in the Re-execution tab, if you would like

re-execution to happen automatically upon choice selection.

The Column Filter Widget node then produces a framework to allow us to interactively choose

the columns we want displayed. For example, let’s build a simple component connecting a

Column Filter Widget node, with the configuration window shown in the figure below, to a Bar

Chart node.

Chapter 6: Advanced Dashboards with Composite Views

124

If we were to right-click on this component and inspect its interactive view, we would get the

output depicted in Figure 6.8. Notice the Excludes/Includes framework at the top generated by

the Column Filter Widget node. Notice also that the bar chart, implemented by the Bar Chart

node, has operated only on the selected input attributes (assigned 2007, assigned 2008,

assigned 2009).

Figure 6.6. The configuration window of the Column Filter Widget node.

Figure 6.7. Simple component with a Column Filter Widget node and a Bar

Chart node producing the dashboard shown in the next figure.

Chapter 6: Advanced Dashboards with Composite Views

125

But there is one problem. At the moment, to apply a new selection of columns to the bar chart

in this dashboard, the composite view must be manually re-executed. That is, this dashboard

is not yet dynamically malleable. In order to avoid the manual re-execution of the composite

view, we’ll need to learn about a feature within some widget nodes called “Re-execution”, and

about the Refresh Button Widget node. This is the subject of the next section.

6.3. Dynamically update the dashboard

In this section, we will learn how to dynamically update a dashboard upon the selected

columns. That is, we will select the column(s) to use - money assigned, used, remaining and

year - and dynamically update the dashboard. To do this we will learn about a concept called

re-execution.

Re-execution allows us to dynamically apply any selection we have made within a composite

view. Some widgets have a “Re-execution” tab while others do not. In addition, the Refresh

Figure 6.8. Output of the simple component.

Chapter 6: Advanced Dashboards with Composite Views

126

Button Widget node gives the re-execution capability to any widget node, therefore let’s discuss

the Refresh Button Widget node first and then later we will talk about the dedicated tab.

Refresh Button Widget

Button Widget allows us to (re-)execute downstream

nodes in a component. It creates a yellow button in

the composite view of the component. Simply

clicking the yellow button triggers the re-execution of

the downstream nodes in the component.

The dialog options of the Refresh Button Widget are

straightforward and leaving most fields blank is

acceptable. The only important setting is the name of

the yellow button.

The Refresh Button Widget node must be connected

via a flow variable connection to the widget node

whose options you would like to refresh (re-execute).

You can decide which workflow segments should be

(re-)executed by where you place the Refresh Button Widget node in the workflow.

Let’s consider the component shown in Figure 6.6, including a Column Filter Widget to select

the columns to use in the following Bar Chart node. After selecting new columns to display in

the bar chart, the execution of the Column Filter Widget node and of the Bar Chart node must

be retriggered. Thus, the Refresh Button Widget node must be connected via flow variable to

the Column Filter Widget node. The new component is shown in the figure below.

Figure 6.9. The dialog options of the Refresh

Button Widget.

Figure 6.10. Adding the Refresh Button Widget node to control re-execution of

the component shown above.

Chapter 6: Advanced Dashboards with Composite Views

127

Note. Unlike most flow variable connections, you do not set any flow variables in the dialog

of the flow-variable-receiving node. In this case, the Refresh Button Widget is sending a flow

variable connection to the Column Filter Widget and the Column Filter Widget node is

receiving the flow variable connection. You do not need to specify anything in the Flow

Variables tab in the configuration dialog of the Column Filter Widget node.

So, in the composite view of the component, once we change the selection of the columns to

display, we click the yellow button, named in this case “Update”, and the selection frame as well

as the bar chart get updated.

But what if you don’t want to click that yellow

button every time you make a new choice? In

KNIME Analytics Platform v4.5 and above, there is

an option to automatically reload the interactive

view whenever a setting of the node is changed.

To enable this option, simply right-click on the

widget node, select “Configure…”, and look for the

“Re-execution” tab in the configuration window.

Select that tab and then check the box next to “Re-

execution on widget value change”.

Note. A small symbol appears on the upper right corner of a widget node that has the re-

execution option enabled.

In general, it is up to the user to decide what to use, whether the re-execution tab or the Refresh

Button Widget node. Most users will use the dedicated Refresh Button Widget node if they have

Figure 6.11. Selecting columns in the Include/Exclude framework and clicking the yellow button produces an

update of the dashboard based on the new column selection.

Figure 6.12. The automatic re-execution functionality

option in a Widget node.

Chapter 6: Advanced Dashboards with Composite Views

128

a very large dataset and re-executing each time a selection is made takes too long or if the

widget they are using does not have the Re-execution tab.

Now that we can select columns and

dynamically refresh all connected nodes and

composite views, either automatically or by

clicking the yellow refresh button, we will turn our

attention to interactively selecting rows in a

dataset.

6.4. Interactively selecting rows by column values

In the last section we learned how to filter (add and remove) columns of interest inside the

dashboard. But what if we would like to filter rows from values within a column? That is, we

don’t want to remove a column entirely as we did before, but rather hone in on certain elements

within the column. In this section, we will select specific projects, by selecting their names in

the Projects column. If we only wanted to focus our attention on Blue and/or some other

projects, we would need to filter the rows to only include the data for those projects.

Now that we have seen how to filter columns of interest dynamically, let’s learn how to filter

rows of interest dynamically. As well, if those rows are nominal (a.k.a. categorical), we can

easily filter those data points using the Nominal Row Filter Widget node. The Nominal Row

Filter Widget node receives a data table at the input port and produces the filtered rows at the

output port. The filtering rule is defined via and Exclude/Include framework in the node’s

interactive view.

Nominal Row Filter Widget

The “Nominal Row Filter Widget” node creates an Exclude/Include framework for categorical

row filter selection. The configuration window of the node does not require any special settings

to be configured/selected, besides the default filtering to show as starting point in the

interactive view. Check the “Re-execution on widget value change” box in the Re-execution tab,

if you would like to trigger re-execution automatically upon any setting change. “Selection Type”

allows the framework for the selection of rows to vary from twinlists, to boxes, and even lists.

Figure 6.13. The widget icon without (left) and with

(right) the refresh symbol in the upper right corner

indicating that re-execution has been enabled.

Chapter 6: Advanced Dashboards with Composite Views

129

In our example, we have set the Selection Type to “Check boxes (horizontal)”, selected projects

Blue, Gobi, and Kalahari, and enabled re-execution. The dashboard then updated automatically

to show the data of the three selected projects.

Figure 6.14. The configuration window of the Nominal Row Filter Widget node.

Chapter 6: Advanced Dashboards with Composite Views

130

Unlike the Column Filter Widget which only uses the “Selection Type” called Twinlist, above we

used the Selection Type called “Check boxes (horizontal)” to give some variety. Below we give

a direct comparison between these two selection types.

Now that we have learned about the Column Filter Widget, the Refresh Button Widget, the Re-

execution tab, and the Nominal Row Filter Widget, we are ready to make the component “Project

Report: Money Flow” implementing the first complete dashboard, as it was described in section

6.1.

Figure 6.15. Dashboard showing used money amounts for selected projects.

Figure 6.16. Ways to visualize column and row filter widgets - the left is called “Twinlist”, and the right is called

“Check boxes (horizontal)”.

Chapter 6: Advanced Dashboards with Composite Views

131

Summarizing, the component contains:

• A Column Filter Widget node to select the data (money flow and year)

• A Nominal Row Filter Widget node to select one or more projects

• A Bar Chart node to display the selected data

• A Text Output Widget to provide a title for the dashboard

• And finally a Refresh Button Widget node to trigger re-execution at any change in the

dashboard settings.

• As a consequence, the composite view of this component shows a dashboard with two

filtering elements, one for the columns and one for the project/rows, and a bar chart.

Notice that the Refresh Button Widget only applies to the Column Filter Widget and allows us

to manually trigger re-execution of the dashboard upon a new column selection. However, we

use the Re-execution tab in the Nominal Row Filter Widget for an automatic re-execution every

time a new project is selected in the dashboard. In certain cases, it may be easier to manually

re-execute, while in other cases you may want re-execution to happen automatically.

With this dashboard, we have the ability to focus on any particular set of years (2007, 2008,

2009) or categories of money flow (used, assigned, remaining) as well as on any particular

project or set of projects (such as Gobi, Kalahari, etc.).

To advance our dashboard-making skills even further, we should now learn how to improve the

user experience. This is the topic of the next two sections.

Figure 6.17. Component Project Report: Money Flow to implement the first Dashboard.

Chapter 6: Advanced Dashboards with Composite Views

132

6.5. Text autocompletion

In the Project Report: Money Flow dashboard, you may have noticed that the twinlists take up

quite a bit of space to expose all possible combinations to the end-user. This may not be ideal

from a user experience point of view. In this section we will look at a way to save space, add a

level of sophistication to the user experience, and restrict what data we allow the user to access

with the Autocomplete Text Widget node.

Figure 6.18. The Project Report: Money Flow Dashboard.

Figure 6.19. Autocomplete textbox from the Autocomplete

Text Widget node in an interactive view.

Chapter 6: Advanced Dashboards with Composite Views

133

As the name suggests, a user can enter the first few letters of a word into a search box and this

node will offer a selection of values from a selected input column, to complete the word. The

node also contains a degree of protection by hiding specific column values.

Autocomplete Text Widget

The “Autocomplete Text Widget” node creates an

interactive view displaying a text input field with

autocomplete functionality.

The configuration window of the node does not

require any settings to be configured/selected,

besides the “Column containing autocomplete

options” dropdown menu in which you select the

column containing the wor ds you would like to be

automatically completed.

Notice that the list of available words to complete will

be from the “Maximum number of rows” contents, so

if you have unique values beyond the default

maximum, increase the maximum value to capture

all possible words you would like autocompleted.

Let us now look at a simple example component which makes use of the Autocomplete Text

Widget node. In this example, we use this node to select a specific project. The specific project

then controls a Row Filter node to select the corresponding data rows. A Refresh Button Widget

node is then introduced for re-execution after a selection of a new project. The composite view

of this component is shown in the figure below.

Figure 6.20. The configuration window of the

Autocomplete Text Widget node.

Figure 6.21. Simple component using the Autocomplete Text Widget

node for project selection.

Chapter 6: Advanced Dashboards with Composite Views

134

Notice that we require the Refresh Button Widget node since the Autocomplete Text Widget

does not have a Re-execution tab.

However, when we inspect the Interactive View of this simple component, we get a dashboard

that is a bit too colorful for our taste. Due to the variety of colors, the dashboard viewer has no

clear focus. In the next section, we will create custom color filters to focus better on certain

groups of years. We can then extend what we learned to create custom filters for data.

6.6. Custom Filtering

In the previous section we allowed a user to see all columns from the original dataset and then

to select a subset of rows to view in their dashboard. Sometimes, however, it is required to

allow users to see only some of the columns and/or some of the rows. Some other times, we

want to expose columns with more user-friendly and meaningful names. In such cases, the

Single Selection Widget node can be useful.

Figure 6.22. Output of the simple Text Autocompletion component using

the Autocomplete Text Widget.

Chapter 6: Advanced Dashboards with Composite Views

135

Single Selection Widget

Single Selection Widget node allows selecting a single value from a list of strings in an

encapsulating component's view.

In “Possible Choices” we simply type out the options we would like displayed to a user who

accesses the Configure menu from the component encapsulating this widget.

Notice we can also set a label, description, and flow variable name. Additionally, we can change

the type of button displayed in the view via “Selection Type” and we can limit the number of

visible options.

Let’s give a practical example. Let’s suppose that we are interested in visualizing the cash flow

for each single year; we would like this to enable a filter to select the one year of cash flow to

visualize.

We can manually type the years as the menu options into the Default Value pane of the

configuration window of the node. Since the menu options do not match one to one the column

names, we use a Rule Engine Variable to force the match and the Column Filter node to select

Figure 6.23. The configuration window of the Single Selection Widget

node.

Chapter 6: Advanced Dashboards with Composite Views

136

the column to visualize. The Rule Engine Variable, discussed in detail in Chapter 5, will

transform the menu options from the Single Selection Widget node into column names that the

Column Filter Node recognizes (see figure below).

Now that we have a general understanding of how these nodes are connected, let us concretely

state what is happening here:

1. Create custom menu options (“All Years”, “2007 only”, “2008 only”, “2009 only”) by

manually typing them in the Single Selection Widget configuration window (i.e., within

Possible Choices pane).

2. Translate those option names into

column names that the Column Filter

node understands via the Rule Engine

Variable node. In this case we use

pattern matching to look for “200X”.

3. Within the Column Filter node’s Flow

Variables setting (image on the right),

set the Rule Engine Variable node’s

flow variable (this flow variable is

called regex_pattern in our example

below).

With that knowledge, we are finally able to

build the Advanced Money Flow with Text

Autocompletion dashboard. We will

Figure 6.24. Combining a Single Selection Widget node with the Rule Engine Variable node to filter columns.

Figure 6.25. The configuration window of the Column Filter

node.

Chapter 6: Advanced Dashboards with Composite Views

137

combine the Autocomplete Text Widget node and

the Single Selection Widget node to build a sleek,

easy to use dashboard. The content of the

component is shown in Figure 6.24.

And remember, if we would like a large title, we

can simply add the Text Output Widget node as

well.

Did you notice we didn’t include the usual title?

What do you think? Do we need a title? How about

the spacing or positions of the widgets?

Remember that if you would like to change the

layout of the dashboard, you can either

• right-click the component and select

Component > Open layout editor, or

• open the component and click on the "Open

layout editor" button in the toolbar.

Having completed both of the Objective

Dashboards, next we will look at how to build an Animated Bar Chart which we can use to

capture the attention of our audience.

6.7. Animating a vanilla bar chart with community
components

As you know, components are a sequence of nodes packaged together that you create within

a KNIME workflow. They encapsulate and abstract functionality, can have their own dialog, and

can have their own sophisticated, interactive views. Components can be reused in your own

workflows but also shared with others: via KNIME Business Hub or the KNIME Community Hub.

They can also represent web pages in a guided analytics application deployed via KNIME

Business Hub. That is to say, anyone can create and share their components with the

community.

Figure 6.26. Advanced Money flow with Text

Autocompletion Dashboard.

Figure 6.27. The layout button in the toolbar of the KNIME Workbench.

Chapter 6: Advanced Dashboards with Composite Views

138

Verified components are a set of

components that behave like KNIME nodes,

including error handling capabilities, which

are developed by KNIME and regularly

released on the KNIME Community Hub.

Examples include the AutoML component

(great for Data Scientists), the Measure

Fractional Years component (great for Excel

users) and the Animated Bar Chart

component (great for everyone). In this

section we will introduce the Animated Bar

Chart component.

The Animated Bar Chart component requires

three input columns:

• a nominal column with category values

(such as Project name),

• a numerical column with some metric

values (such as money used),

• and a date column.

In the case of the Project.txt file, we have:

money related columns, the project column,

and the year column. We need to transform

the year column into a date column. From

there, we simply populate “Select Bar

Column” (nominal value) with the project

column, “Select Metric for Bars Size”

(numeric value) with the money column, and

“Select Timestamp” (datetime value) with

the year column now in form of a date&time

column.

Animated Bar Chart

“Animated Bar Chart” verified component creates a bar chart that visually updates starting with

the earliest data until reaching the latest data.

It requires a nominal column, a numeric column, and a datetime column. The configuration

window requires:

Figure 6.28. The configuration window of the Animated Bar

Chart component.

https://www.knime.com/verified-components
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Automation/AutoML~33fQGaQzuZByy6hE
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Financial%20Analysis/Measure%20Fractional%20Years~7VOGYSdO8W1-_eWa
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Financial%20Analysis/Measure%20Fractional%20Years~7VOGYSdO8W1-_eWa
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Visualizations/Animated%20Bar%20Chart~p_w4TxcRxUbUguqo
https://hub.knime.com/knime/spaces/Examples/latest/00_Components/Visualizations/Animated%20Bar%20Chart~p_w4TxcRxUbUguqo

Chapter 6: Advanced Dashboards with Composite Views

139

• “Select Bar Column” (nominal value) for the category,

• “Select Metric for Bars Size” (numeric value) for the measure changing over time,

• “Select Timestamp” (datetime value) for the time values

You can tick the Sum Values option to add an aggregation if needed.

As well, if you set a Minimal Amount Threshold, an aggregation sum lower than this value will

be discarded. Raising this threshold increases the smoothness of the visualization and reduces

the number of animations.

We will use the Projects.txt data and transform the year column which is typically read as an

Integer into a date format, via a String Manipulation node to zero pad the year and then via a

String to Date&Time node to convert it to a Date&Time object.

Once a date column is ready, we will set the following options in the Animated Bar Chart

component using columns from Projects.txt:

1. “Select Bar Column”: “name” which is a nominal value, i.e., the name of the project

2. “Select Metric for Bars Size”: “money used (1000)” which is a numeric value

3. “Select Timestamp”: “date” which is the year as a date value

This allows us to produce a bar chart that shows us the change in money used through time

for each project.

Congratulations for finishing these seven advanced sections. You may have noticed that we

did not touch upon the topic of color which is important when creating dashboards. This was

on purpose. In the final section of this chapter, one of your exercises will ask to create a color

palette option using the Single Selection Widget node. Once you’ve completed and reviewed

the answers provided for each exercise, you will be able to create interactive dashboards with

a customized experience for internal or external use.

Figure 6.29. Workflow for animating a bar chart.

Chapter 6: Advanced Dashboards with Composite Views

140

6.8. Geospatial Analytics Extension

KNIME software was not born as a data visualization tool, but it is starting to become one. You

can already produce advanced plots and charts and assemble them together to form fancy

interactive dashboards accessible via web browser. The latest addition to the data visualization

extension are the geospatial analytics nodes. Developed by the group of Prof. Guan at Harvard

University, these nodes wrap Python GeoPandas libraries to export geospatial functionality into

the familiar easy to use KNIME GUI. By the way, this is one of the first examples of successful

usage of the latest KNME Python integration, which allows users to create KNIME nodes from

Python code.

To create geolocation maps in your dashboard, first of all, you need to download and install the

KNIME Geospatial Extension. The geospatial analytics extension has been included into KNIME

Analytics Platform as of December 2020 with version 4.7. On the KNIME Community Hub

search for "geospatial" under the tab "Extensions", then drag & drop the row "Geospatial

Analytics Extension for KNIME” onto your KNIME Analytics Platform to install it.

Figure 6.30. Time elapsing in an Animated Bar Chart interactive view.

Figure 6.31. The extension with geolocation nodes on the KNIMECommunity Hub.

https://hub.knime.com/knime/extensions/org.knime.features.python3.scripting/latest/
https://hub.knime.com/search?q=geospatial&type=Extension&sort=best
https://hub.knime.com/

Chapter 6: Advanced Dashboards with Composite Views

141

Once installed, you should see a folder named “Geospatial Analytics” under “Community

Nodes” in the Node Repository of your KNIME Analytics Platform. This folder contains a very

large number of nodes offering a variety of geolocation functions and we will see just a few of

these nodes in this section.

Note. The visualization nodes of the geospatial Analytics Extension require an internet

connection to work properly, since they need to connect to the underlying dataset to display

the world map.

We will implement two very simple geolocation tasks, just to show how to use these nodes:

• Task 1: Display a place (like a city) on a map

• Task 2: Display a country on a map and overlay a representative point to it.

Besides these very simple tasks, more could be achieved, like for example calculating

distances, analyzing data, and producing models. For the sake of this introduction, however,

we will just show how to display polygons and points on a map.

Task 1: Display a Place on a Map

Let's start with a simple task: the visualization of a place, any place, on a world map. Let’s take

the city of Cambridge (MA) as an example. Geolocation is based on two basic shapes: polygons

and dots. Polygons enclose a city or a country within their geographical boundaries; dots

indicate just the location without any information on boundaries.

Let’s try to display the city of Cambridge (MA) with its boundaries on the world map. What we

need for this simple task are two nodes: the OSM Boundary Map node and the Geospatial View

node.

OSM Boundary Map

The OSM Boundary Map node relies on

an open map dataset, for example the

Open Street Map (OSM) dataset, for

boundary information. The boundary of a

place is expressed via a polygon. The

node receives as input the name of the

place – either country, city, or village –

retrieves the required information from

the dataset, and produces the

Figure 6.32. The configuration window of the OSM Boundary

Map node.

Chapter 6: Advanced Dashboards with Composite Views

142

corresponding boundary polygon at the output form. Data such as polygons are stored in a new

data type: the Geometry type. The only setting required in the node configuration window is the

place we want to show in the map.

Another interesting node from the OSM dataset is the OSM POIs node. This node extracts all

points of interest for a selected category in the region(s) enclosed in the polygon(s) in a

Geometry type column.

Let's add the OSM Boundary Map node to the workflow and let's configure it to export the

polygon around the city of Cambridge (MA). The second node we need is a visualization node:

the Geospatial View node.

Geospatial View

This node displays polygons - via polygon objects in a Geometry column - and points - via

latitude and longitude coordinates - on a world map. The first setting in the configuration

window is the Geometry-type column to use as input for the display.

Besides that, a number of visualization settings are also required, such as tooltip content, size,

color, classification, base map, and legend. The base map is an interesting parameter, since

different types of maps display different representations of the same polygon. For this

example, we chose the Open Street Map for this example.

This node has a preview on the left of the configuration window. This preview can be refreshed

after each setting modification to see the final view. To refresh the preview, just click the button

“Save & Execute”.

To confirm the setting update, click the button “OK” in the lower right corner. If you have

refreshed the preview, the node will then appear as already executed, and the final view would

already be available.

The node has a View, like all visualization nodes. Hover over the node and click the “Open view”

button in the node’s Action Bar. You will get the map with the selection of Cambridge in blue.

Notice the zoom in /zoom out button in the top left corner of the view.

Chapter 6: Advanced Dashboards with Composite Views

143

After execution, the view of the Geospatial View node will show the polygon enclosing the city

of Cambridge (MA) on a world map. The final workflow, named “3. Visualize a place on a map”

and consisting of just two nodes, is reported in the figure above and is available in the Chapter

6 folder.

Figure 6.33. The configuration window of the Geospatial View node.

Chapter 6: Advanced Dashboards with Composite Views

144

Figure 6.34. Cambridge (MA) on a map.

Figure 6.35. The minimum workflow to locate and display a place within

its boundaries.

Chapter 6: Advanced Dashboards with Composite Views

145

A final note on these new nodes. The tabs at the top of the configuration window are missing.

To configure your settings via Flow Variables, you need to right-click the node and select

“Configure Flow Variables…”. This will then lead you to the window that overwrites the

configuration settings via Flow Variables. Once a configuration setting has been set via a flow

variable, a little barred square with a red dot at the top appears close to that setting in the

configuration window. This means the node operates based on the value of a Flow Variable for

that setting.

Task 2: Visualization of a Country on a World Map

Let’s take on a more complex challenge. Let’s visualize a country and a representative point on

it. As an example, let’s visualize Italy. In the OSM Boundary Map node, now we set “Italy” as

setting.

The polygon around Italy is then produced and stored in a Geometry type column. Coordinates

in the polygon are expressed in degrees. We want to pass from the degree system to the metric

system for an easier and more interpretable calculation of distances, for example. The node

that does that is the Projection node.

After that, we want to draw a representative point for the region that we have previously

selected. The node to do that is the Geometry To Point node.

Figure 6.36. The circled icon shows that this setting is operated by a

Flow Variable.

Chapter 6: Advanced Dashboards with Composite Views

146

Projection

The Projection node transforms the

Coordinate Reference System (CRS) of the

Geometry column into a new system

compatible with the metric system, all points

into objects, and all connections into lines.

The configuration window requires the

Geometry type column that we want to

transform and the new coordinate system.

The output data table has the same content as

the input data table, but the Geometry type

column now uses the new reference system.

Geometry To Point

Geometry To Point returns a point

representing each geometry. There are two

types of points: centroids and representative

points. The centroids are calculated and

depending on the shape of the polygon can

happen to be located outside of the region; the

representative points on the opposite are

fixed and are guaranteed to be within each

geometry. All the configuration window needs

here is:

• the Geometry type column containing

the polygons

• the type of point we want to draw, whether the centroid or the representative point

After execution this node produces a description of the point, including its latitude and

longitude and the point stored in a new Geometry-type column.

The visualization of a point is very tiny and hard to distinguish especially if compared to the

size of the country. So, we use the Buffer node to pad the dot with some extra space on the

map.

Figure 6.37. The configuration window of the Projection

node.

Figure 6.38. The configuration window of the Geometry

To Point node.

Chapter 6: Advanced Dashboards with Composite Views

147

Buffer

The Buffer node pads a point on the map with

some extra space all around. The only settings

required by the Buffer node are:

• the Geometry type column containing

the point

• the buffer size (aka distance)

The Buffer node then transforms the point into

a polygon containing the padding space. This

polygon is then saved in yet another Geometry

type column.

We used a buffer size of 100 000. The output data table thus contains a larger point stored as

a polygon in the new Geometry type column. At this point, we keep all polygons – country and

Figure 6.39. The configuration window of the Buffer

node.

Figure 6.40. Italy on a world map with its buffered representative point in the middle.

Chapter 6: Advanced Dashboards with Composite Views

148

representative point – to be visualized, via a Concatenate node, and we feed with those a

Geospatial View node for the visualization. The final visualization is shown in the figure above,

the final workflow named “4. Visualize a country on a map”, is displayed below.

We will stop here for now, knowing that what we have shown is just a little taste of what the

geospatial analytics extension can offer.

6.9. Exercises

Exercise 1

In this chapter, we have learned to use the Single Selection Widget node to create custom menu

options. For this exercise, you will create radio buttons which allow the user to change the color

palette of a simple dashboard. For the dashboard, create a bar graph using the data from the

“used” year columns in the Projects.txt file.

Solution to Exercise 1

We require several nodes contained within a component to achieve this task. Specifically, we

need a:

• Single Selection Widget node to create the selection menu

• Rule Engine Variable node to transform the menu selection into a viable setting

• Color Manager node using the selected setting to implement the desired color palette

• Bar Chart (JavaScript) node to display the bar chart in the desired color palette

• Extract Table Spec node allows us to put the columns in a row format which the Color

Manager will accept.

Figure 6.41. Workflow that visualizes a country and its representative point.

Chapter 6: Advanced Dashboards with Composite Views

149

Note. The Single Selection Widget must have re-execution enabled.

Figure 6.42. The interactive view produced by the Single Selection

Widget node to be created for Exercise 1.

Chapter 6: Advanced Dashboards with Composite Views

150

Figure 6.43. Exercise 1: Contents of the component implementing the dashboard.

Figure 6.44. Configuration of the Color Manager’s “Flow

Variables” tab.

Chapter 6: Advanced Dashboards with Composite Views

151

The Rule Engine Variable node implements the following rules:

$${Isingle-selection-navigation}$$ = "Bold" => "set_1"

$${Isingle-selection-navigation}$$ = "Pastel" => "set_2"

$${Isingle-selection-navigation}$$ = "Color Blind Safe" => "set_3"

$${Isingle-selection-navigation}$$ = "Custom" => "custom_set"

If the user chooses “Bold”, then the “set_1” option is chosen for the “palette_option” flow

variable within the Color Manager dialog. If the user chooses “Pastel”, then “set_2” is used as

the flow variable, so on and so forth. The flow variable named “palette choice” is what we

defined as the “New flow variable name” within the Rule Engine Variable node.

Exercise 2

The goal of this exercise is to create a dashboard, based on file Projects.txt, with a stacked

area chart to visually show the difference between money used and money assigned per year

and per project. The dashboard must also include the ability to dynamically filter to a distinct

project using text autocompletion. Finally, allow range slider filtering over the amount of money

used.

If that seems difficult then here are a few hints. This exercise has 3 primary subtasks:

• Transform the raw Projects.txt data such that your table contains the sum of money used

and money assigned for each project, per year. The first 7 rows of expected data are

shown below for your reference.

• With the transformed data, add a Refresh Button Widget node and the Autocomplete Text

Widget node. The user should have the ability to refresh the text using the yellow button

and the text chosen by the user must filter the data from raw Projects.txt.

• Finally, add the Interactive Range Slider Widget node.

Bonus: For which years was the money used above the value 1000?

Figure 6.45. Transformation of the Projects.txt data.

Chapter 6: Advanced Dashboards with Composite Views

152

Solution to Exercise 2

First, transform the raw data using the GroupBy node. In the Groups tab, we will group using

the project name and reference year columns. In the Manual Aggregation tab, we will sum the

money assigned and the money used.

Next, we will filter our data, using a Row Filter node, to the project of interest using a

Autocomplete Text Widget node. This node must be connected to a Refresh Button Widget

node so the user can change the selected project at any time.

Next, we will connect to an Interactive Range Slider Filter Widget node which allows us to slide

over money used.

Finally, we will connect our aggregated data to the Stacked Area Chart (JavaScript).

Figure 6.46. Exercise 2: Contents of the component solution to implement the required dashboard.

Chapter 6: Advanced Dashboards with Composite Views

153

Figure 6.47. The dashboard for exercise 2.

154

Chapter 7: Loops

7.1. What is a Loop

In the “Node Repository” there is a full category called “Workflow Control” for logical and control

operations on the data flow. The “Workflow Control” category contains a number of sub-

categories, like:

• “Automation” contains a number of utility nodes to improve the controlled execution and

orchestration of workflows;

• “Variables” contains all those nodes that create, delete, and update flow variables

(Chapter 4).

• “Loop Support” contains those nodes that allow the implementation of recursive

operations; that is of loops;

• “Switches” contains the nodes that can switch the data processing flow one way or

another;

• “Error Handling” nodes switch to an alternative workflow branch in case of error

• “Meta Nodes” contains a few pre-packaged commonly used loops, for example to inject

variables or to read all files in a folder.

In this section we will work with the nodes in the “Loop Support” sub-category.

A loop is the recursive execution of one or more operations. That is, a loop keeps re-executing

the same group of operations (the body of the loop) till some condition is met that ends the

loop. A loop starts with some input data; processes the input data a number of times; each

time adds the results to the output data table; and finally stops when the maximum number of

times is reached, or some other condition is met. A loop then has a start point, an end point to

verify that the stopping condition is met, and a body of operations that is repeated. Each

execution of the loop body is called a loop iteration. Loops do not work only on processing

data, but also on flow variables. Similar loops can be constructed to export data or flow

variables. The output data table at each iteration can appended as a column set or

concatenated as a row set to the previous results.

A very commonly used loop iterates across a list of files - for example all files found in a folder

with the “List Files” node - reads the content of each file, and piles up the results into the loop

output data table. This of course works only if all files have a compatible data structure.

Chapter 7: Loops

155

Another example could be to grow an initial numerical

value by the current iteration value for N iterations. If the

initial numerical value is named “inp” and set to 5, at

each loop iteration we add the value of the current

iteration “i” - where “i”=1,2,3,4,5,…,N - till “i” = “N”. If “N” is

set to 10, the output data table will contain values 5, 6, 7,

8, 9, 10, 11, 12, 13, and 14. In this example, the initial

value “inp”=5 can be contained in a flow variable and the

output values can be stacked or appended in a data

table.

Finally, the classic loop example adds one unit to an

integer variable N times. Starting from the variable initial

value, we add 1 at each iteration to the result of the

previous iteration. The loop stops when we have reached

the maximum number of iterations N. The loop output in

this case is just one value, i.e., the final sum and not a data table. This one output value could

then be exported as a flow variable rather than as a data table. Notice that in this loop each

iteration works with the result of the previous iteration. While this is common in programming

languages it is less common in data analytics. In data analytics the goal is usually to transform

the entire data set and less often to micro-transform the variables beneath. The KNIME

Analytics Platform has only one loop for this kind of task: the recursive loop.

In KNIME Analytics Platform there are a number of nodes that can be used to implement loops:

either loops on a pre-defined number of iterations or loops that stop when some condition is

met. Loops in KNIME are always built with at least two nodes:

• The node to start the loop

• The node to end the loop

• A few additional but not necessary nodes to build the body of the loop

Note. Not all loops are in the “Workflow Control/Loop Support” category. You will find a few

specialized loops here and there in other sub-categories, such as “Ensemble Learning”, “IO”,

“Optimization”, and more. Just type “loop” in the search box on top of the “Node Repository”

panel and see how many nodes show up that are implementing some kind of loop.

7.2. Loop with a pre-defined number of iterations

The easiest loop to implement is the loop with a pre-defined number of iterations. That is, the

loop where a group of operations is repeated a fixed number of times.

Figure 7.1. Loop Example.

Chapter 7: Loops

156

In this section we build an example workflow on a data set with 3 clusters distributed across

two variables (see Scatter Plot below). The goal is to produce a copy of this dataset shifted

one unit to the right on the x-axis. Let’s repeat this operation 4 times to obtain 4 copies of the

original three clusters, each copy shifted one more unit to the right than the previous copy. To

build the required 4 copies of the original data set, we introduce a loop with 4 iterations. Each

iteration moves the original data set of “i” units to the right, where “i” is the number of the

current iteration and concatenates the resulting data with the data processed so far.

In a new workflow group named “Chapter 7”, we created a new empty workflow called

“Counting Loop 1”. First of all, the workflow needed to read in the original data set. Since we

did not have such a data set available, we artificially created it by using the “Data Generator”

node.

Data Generator

The “Data Generator” node generates artificial random data normalized in [0,1], grouped in

equal size clusters, and with a fixed number of attributes. Data points for each cluster are

generated following a Gaussian distribution with a given standard deviation and adding a

certain fraction of random noise to the data.

Figure 7.2. Dataset with 3 clusters across two variables.

Chapter 7: Loops

157

The “Data Generator” node is located in the “IO”

-> “Other” category. In order to perform its task,

the “Data Generator” node needs the following

settings:

• The number of clusters to be created

• The number of space coordinates (i.e.,

“Universe Sizes”)

• The total number of data rows (i.e.,

“Pattern Count”). An equal number of

patterns (= number of data rows/number

of clusters) is subsequently generated for

each cluster.

• The standard deviation is used to

generate data in each cluster. Notice that

it is the same standard deviation value for

all clusters.

• The noise fraction to apply to the

generated data.

• A random seed to make this random pattern generation reproducible

The “Data Generator” node offers two output ports:

• One port with the generated data rows, each with its own cluster ID

• One port with the cluster centers in the space coordinates

Note. Data can be generated in more than one universe, each universe with a different

number of clusters and a different number of coordinates.

In case of more than one universe to be created, the cluster counts and the universe sizes are

set as a sequence of comma separated numbers. For example, 2 universes with 3 and 4

Figure 7.3. Configuration window of the Data Generator

node.

Chapter 7: Loops

158

clusters and 2 and 3 coordinates each are described by “Cluster Count” = “3,4” and “Universe

Sizes”=“2,3”.

We then started the new workflow “Counting Loop 1” with a “Data Generator” node to generate

one single universe with 100 data rows equally distributed across 3 clusters, on a two attribute

space, with a standard deviation 0.1 for each cluster, and no noise added. The node was

commented with “3 clusters, 2 coordinates”. The generated random data and their cluster

centers are reported in the figures below. In order to visualize the data and their clusters, we

added a “Color Manager” node and a “Scatter Plot” node into the workflow. The data

visualization performed with the “Scatter Plot” node on a two-coordinate space –

“Universe_0_0” and Universe_0_1” – is shown in Figure 7.2.

The goal was to generate 4 copies of the original data set and shift each copy one unit to the

right. That is, the first copied data set should be identical to the original data set inside [0,1] x

[0,1]; the second copied data set should be like to the original data set but inside [1,2] x [0,1],

and so on. We then needed a loop cycle to shift the data 4 times, each time to a different region.

Figure 7.4. Generated random data for workflow "Counting Loop 1".

Figure 7.5. Cluster centers of the generated random data in workflow

"Counting Loop 1".

Chapter 7: Loops

159

In particular, since we already knew how many times the copy had to be made, we used a loop

with a pre-defined number of iterations, i.e., 4. To move the original data set one unit to the right

4 times, the loop was to add the iteration number to the data set x-values at each iteration.

Thus:

• iteration 0: x = x+0 -> the data set is the exact copy of the original data set

• iteration 1: x = x+1 -> the data set is moved one unit to the right

• iteration 2: x = x+2 -> the data set is moved two units to the right

• iteration 3: x = x+3 -> the data set is moved three units to the right

A loop with a pre-defined number of iterations starts

with a “Counting Loop Start” node. The most generic

loop ending node is the one named “Loop End”. Notice

that the Counting Loop Start node is created with no

input ports and no output ports, while the Loop End

node is created with just one input port and one output

port. This can be changed by clicking on the plus sign

which appears when you hover mouse pointer over the

node.

Clicking on the plus sign opens a

window to add one input and one

output port of a predefined type, i.e.,

data, database, connections, and so

on. Clicking again allows you to add

one more port at the input and at the

output and so on, as to obtain a loop

start node as complex as needed.

Clicking on the added port(s) allows

you to remove input/output ports.

The same is true for the Loop End

node.

Let’s add one more data port at the

input and output of the Counting Loop Start node and let’s use the Loop End node as it is after

being created.

Figure 7.6. Counting Loop Start and Loop End

node.

Figure 7.7. Clicking on the plus sign allows to add input ports while

clicking on the added port(s) allows you to remove the port.

Chapter 7: Loops

160

Counting Loop Start

The “Counting Loop Start” node starts a loop with a pre-

defined number of iterations.

That is, it starts a cycle where the operations, between

the “Counting Loop Start” node and the end loop node,

are repeated a pre-defined number of times.

The only setting required for such a loop start node is

the number of pre-defined iterations (“Number of

loops”).

Loop End

The “Loop End” node closes a loop and concatenates

the resulting data tables from all loop iterations. It

requires the following configuration settings:

• The row key policy; that is: keeping the old

RowIDs, make the old RowIDs unique through

suffix, or just generate new unique RowIDs.

• The flag specifying whether to append a column

to the output data set with the iteration number.

Iteration numbers start with 0.

• The flags needed for possible incongruent data

across iterations: empty input tables, different

output column types, and different table specs in

general.

Note. The “Loop End” node concatenates the resulting data tables produced at each

iteration. However, other loop end nodes can append the resulting data tables as additional

columns, one iteration after the other.

The “Counting Loop Start” node, while starting a loop, also creates two new flow variables: one,

named “currentIteration”, contains the current iteration number and the other, named

“maxIterations”, contains the total number of iterations.

Figure 7.8. Configuration window of the

Counting Loop Start node.

Figure 7.9. Configuration window of the Loop

End node.

Chapter 7: Loops

161

So far, we have started and closed a loop with a pre-defined number of iterations, without any

operations in between. We still need to introduce a loop body that moves each copy of the

original data table one step further to the right on the x-axis. To do that, we can exploit the

values in the “currentIteration” flow variable created by the “Counting Loop Start” node. Indeed,

we used a “Math Formula” node where we added the $${IcurrentIteration}$$ flow variable to

the $Universe_0_0$ attribute (the x-axis) (see configuration window above).

In the “Flow Variable List” panel on the bottom left, you can see the two new flow variables

introduced by the “Counting Loop Start” node: “currentIteration” and “maxIterations”. Double-

clicking one of them automatically introduces it in the formula editor with the right syntax. The

same for any column listed in the panel above, named “Column List”.

The math formula $Universe_0_0$ + $${IcurrentIteration}$$ overwrites the Universe_0_0

coordinate, effectively moving each copy of the data to the right on the x-axis as many units as

the iteration number.

Figure 7.10. Configuration window of the Math Formula node used to implement the loop body.

Chapter 7: Loops

162

The final data set then consists of 4 identical vertical stripes of data equally spaced in [0, 4] on

the x-axis. We used a “Scatter Plot” node again to verify the new data placement in the final

data table. Finally, the figure below shows the “Counting Loop 1” workflow.

Figure 7.11. Visualization of the data set resulting from the loop implemented by in the “Counting

Loop 1” workflow.

Figure 7.12. The "Counting Loop 1" workflow.

Chapter 7: Loops

163

7.3. Dedicated Commands for Loop Execution

Loops have a number of dedicated execution options. The list below shows most commands

available from the Node Action Bar of loop end and loop start nodes and their functionalities.

Loop End nodes

• “Execute” (second from the left) runs the whole loop with all

required iterations. To execute the whole loop you need to select

“Execute” in the loop end node

• “Cancel” (fourth from the left) stops the loop execution and resets

the loop

• “Reset” (fifth from the left) resets all nodes in the loop

• “Step Loop Execution” (third from the left) executes the next loop

iteration and pauses at the end, allowing the visualization of the

intermediate results in the loop body.

Loop Start nodes

• “Execute” only executes the loop start node, i.e. it only transfers the input data into the

loop

• “Cancel” stops the loop execution and resets the loop

• “Reset” resets all nodes in the loop

To reset the loop, it is enough to select the “Reset” option in the context menu of any node in

the loop, including the loop start, the loop end node, and any node in the loop body. The last

three options in the loop end nodes – Pause, Resume, and Step Loop Execution – make loop

execution very flexible and easy to debug.

Note. It might be necessary, in some cases, to execute the loop nodes manually for the first

time to be able to configure them properly.

Figure 7.13. Node Action

Bar of the Loop End

node.

Chapter 7: Loops

164

7.4. Appending Columns to the Output Data Table

In section 7.2 we have seen that the “Loop End” node concatenates together the data tables

produced at each loop iteration. A part of the output table of the “Loop End” node in the

“Counting Loop 1” workflow is shown below. The last column of the data table, named

“Iteration”, is created by the “Loop End” node (if specified so in the configuration window), and

shows the iteration number during which each data row was created.

However, sometimes we might like to append the data table resulting from each iteration as

new columns to the previous results. That is, at each iteration new data columns are generated

and appended to the current output data table. The figure below shows an output data table

where column “Cluster Membership (Iter #1)” contains the data generated from column

“Cluster Membership” at the end of loop iteration number 1, and column “Universe_0_0 (Iter

#2)” contains the data generated from column “Universe_0_0” at the end of loop iteration

number 2, and so on.

In order to demonstrate how such a loop output data table has been produced, we slightly

modified the workflow used in the previous section and renamed it “Counting Loop 2”. The

“Counting Loop 2” workflow is in general identical to the “Counting Loop 1” workflow except

Figure 7.14. Output table of the Loop End node in the "Counting Loop 1" workflow.

Figure 7.15. Output table of a Loop End node where the data resulting from each iteration are appended as new

columns.

Chapter 7: Loops

165

for the choice of the loop end node. Here, instead of using the generic “Loop End” node, we

used the “Loop End (Column Append)” node.

Loop End (Column Append)

The “Loop End (Column Append)” node

marks the end of a loop and collects the

resulting data tables from all loop iterations.

At each iteration, the output data columns are

appended as a set of new columns to the

output data table collected so far.

This node requires minimal configuration,

just a flag on whether to keep the same

RowIDs at each iteration. This flag, when

enabled, speeds up the joining process of the

new data columns to the table of the so far

collected results.

The “Loop End (Column Append)” node is the

appropriate choice to close a loop, if the columns produced by the loop body are supposed to

be appended to the output table.

By using the “Loop End (Column Append)” node to close the loop in the “Counting Loop 2”

workflow, the data table in Figure 7.15 is generated after the loop execution. Here an x-shifted

copy of the original data set is generated at each iteration and then appended as a new set of

columns to the current output data table.

Notice that the “Scatter Plot” node at the end of the “Counting Loop 2” workflow can only

visualize two coordinates at a time and therefore we cannot have the full visualization of the

results of all loop iterations as in Figure 7.11. Thus, in the Scatter Plot below we visualized

“Universe_0_0 (iter #2)” vs. “Universe_0_1 (iter #2)” with a scatter plot. There you can see that

the x-range falls in [2,3] and not in [0,1] like for the original data set.

Figure 7.16. Configuration window of the Loop End

(Column Append) node.

Chapter 7: Loops

166

Note. The “Loop End (Column Append)” node appends all columns produced in the output

table, not only the processed ones. Therefore, the input columns, if not removed with a

“Column Filter” node, will appear multiple times (as many times as many iterations)

unaltered in the final output table.

Figure 7.17. Scatter Plot of the data table generated by loop iteration #2 results.

Chapter 7: Loops

167

7.5. Loop on a List of Columns

Let’s suppose now that we want to create two more shifted data sets but shifted differently on

the x-axis and on the y-axis, and that we also want to append the new columns to the resulting

data set. We could, of course, modify the “Counting Loop 2” workflow to iterate only twice and,

depending on the iteration number, apply custom x- and y-shifts to the data set. We could also

use a loop that iterates on a list of selected columns.

A loop that iterates on a list of columns starts with a “Column List Loop Start” node. This kind

of loop iterates across all columns, one by one, and runs the group of operations specified in

the body loop for each column. The loop then can end with a “Loop End (Column Append)”

node or just with a “Loop End” node, depending on how we would like to collect the results in

our final data table.

In order to demonstrate how to implement a loop that iterates over a list of columns, we created

a new workflow named “Loop on List of Columns”.

This workflow reads the data set produced by the “Counting Loop 2” workflow, including the

original data set and 3 copies of the same data set differently shifted across the x-axis. The

goal here is to multiply the x-axis of each iteration set by a different numerical factor. How do

we identify each iteration set? If you remember, the “Loop End (Column Append)” node was

renaming columns with duplicate names by appending a “(Iter #n)” suffix to the column name.

Figure 7.18. Workflow "Counting Loop 2".

Chapter 7: Loops

168

Thus, data set columns from iteration n are identified by the suffix “(Iter #n)” in the column

names.

The goal is to multiply the x (“Universe_0_0”) and y (“Universe_0_1”) value of each iteration set

by the iteration number in the column name plus one. So, “Universe_0_0 (Iter #2)” and

“Universe_0_1 (Iter #2)” should both be multiplied by 3, while “Universe_0_0” and

“Universe_0_1” by 1 and so on. To define the correct multiplying factor, we need to work on

each column name String and extract the number in the “Iter #” suffix. Once we have it, we need

to multiply all values in that column by the associated numerical factor (= iteration number in

column name +1).

Column List Loop Start

The “Column List Loop Start” node iterates over a list of columns in the input table, one by one.

The columns on which to iterate are selected in the configuration window by means of an

“Exclude/Include” framework. Columns can be included manually, through wildcard and regex

selection, or based on type.

The “Column List Loop Start” node separates the columns in the input data table into iteration

columns (“Include” panel) and non-iteration columns (“Exclude” panel).

Figure 7.19. Configuration window of the Column List Loop Start node.

Chapter 7: Loops

169

At each iteration, the non-iteration columns are processed and appended to the resulting data

table together with the current iteration column, while all other iteration columns are excluded

from the results.

Additionally, a strategy can be defined in case the iteration column is empty.

We used a “Column List Loop Start” node to iterate on the different columns of the input data

set. The configuration window includes all “Universe*” columns in the iteration group and

excludes only the column named “Cluster_Membership”. Such inclusion could be performed

manually (those are not that many columns) or using the wild card-based selection. In the case

of the wildcard-based selection, “Universe*” should be used as pattern with wildcard to match

the column names. After execution, the “Column List Loop Start” node produces two flow

variables: “currentIteration” with the current iteration number and “currentColumnName” with

the name of the current column in the loop.

Our goal included the structure of the final table to be identical to the structure of the input

table, only with different values in each column. In order to append the data columns into the

same position as in the original table, the loop was closed with a “Loop End (Column Append)”

node.

The loop was built with two parallel branches.

• One branch defines the multiplying factor. That is, it checks the flow variable

“currentColumnName” for the presence of “#”; it then extracts the character following the

position of “#”; if “#” was not found, default multiplying factor is 0, otherwise is the number

following “#”; the last step is to add +1 to the multiplying factor. All of this is obtained with

three “String Manipulation” nodes, one “Math Formula (Variable)” node, and one “Rule

Engine Variable” node. This whole part has been grouped under a metanode named

“define factor”.

• One branch eliminates “Cluster_Membership” column from the iteration set, renames the

current column to an anonymous “temp_column”, applies the multiplying factor from the

parallel metanode, and changes the column name back to its original one.

Figure 7.20. Content of metanode “define factor”. “String Manipulation (Variable)” node detects “#” in column name

via the “indexOf()” function, it then extracts the number following “#” if any; if no number, “factor” is 0 otherwise is the

detected number; finally the “Math Formula (Variable)” node adds +1 to flow variable “factor”.

Chapter 7: Loops

170

Renaming the current iteration column to “temp_column” is necessary to allow the “Math

Formula” node to work on any input column independently of its name. The renaming process

is carried out through a “Column Rename” node using the value in the flow variable

“currentColumnName” to overwrite the “old_column_name” setting. The inverse renaming

process is carried out again through a “Column Rename” node using the value in the flow

variable “currentColumnName” to overwrite this time “new_column_name” in the configuration

settings.

After the column is renamed, it is presented to the “Loop End (Column Append)” closing node,

to be appended to the other already processed data columns. Finally, a “Joiner” node rescues

the “Cluster_Membership” data column from the original data table. This will be used for

coloring in the “Scatter Plot” node.

The two following Scatter Plots use the newly generated columns “* (Iter #2)” and “*(Iter #3)”
multiplied by different factors. The shape looks similar but the x- and y-range are different.

Figure 7. 21. Value of flow variable “currentColumnName” overwrites

configuration setting “new_column_name” in the last “Column Rename”

node.

Chapter 7: Loops

171

Figure 7.22. Data points from altered “Iter #2” columns. Notice the range of the axis and

compare with plot below.

Figure 7.23. Data points from altered “Iter #3” columns. Notice the range of the axis and

compare with plot above.

Chapter 7: Loops

172

7.6. Loop on a List of Values

Let’s now use the “sales.csv” file from the KALdata folder that we have used in some previous

sections. The goal of this section is to calculate some statistical measures about the sales in

each country.

• The statistical measures for both numerical and nominal columns are calculated through

a “Statistics” node.

• Data about each country are isolated through a “Row Filter” node.

• The list of unique countries included in the data column “country” is extracted with a

“GroupBy” node using the “country” column as the group column and no aggregation

columns. A “GroupBy” node with only one group column and no aggregation columns

produces the list of unique values available in the group column.

What we are still missing is a loop that allows us to iterate over all countries in the list and to

calculate the sales statistics for each country at each iteration.

In the “Workflow Control” -> “Loop Support” category, the node “Table Row To

Variable Loop Start” starts exactly the kind of loop that iterates across a list of values.

Table Row To Variable Loop Start

The “Table Row To Variable Loop Start” starts a loop that iterates on a list of values.

Figure 7.24. Workflow "Loop on List of Columns".

Chapter 7: Loops

173

This node takes a data table at the input port and, row by row, transforms the data cells into

flow variables with the same name as their column name. At the next iteration, the flow

variables update their value with the next value from the corresponding column.

The Table Row To Variable Loop Start node

requires the following settings:

• a handling strategy if the field to be

transformed into a variable has a missing

value. Such strategy can be drastic, such as:

o fail the node execution or

o omit the creation of the variable

or can be more tolerant and keep the node

running and still create the desired flow

variable. It just fills it with a fictitious value,

such as:

o a fixed string value

o or a number fixed value

• the selection of the input fields to be

transformed into flow variables. This is

achieved as usual via an exclude/include

frame.

The loop performs as many iterations as the

number of rows in the input table at the loop start

node.

In a new workflow named “Loop on List of

Values”, we started by reading the data from the

“sales.csv” file with a “File Reader” node. After

that, we isolated the data column “country” with a

“Column Filter” node and we built the list of

countries with a “GroupBy” node using “country”

as group column and no aggregation columns.

The output data table of the “GroupBy” node

contains just one column named “country” with a

list of unique country values. This is the input data table of the “Table Row To Variable Loop

Start” node.

If we execute the “Table Row To Variable Loop Start” node and look at the output port view

(right-click the node to open its context menu and select the option “Variable Connection”), we

Figure 7.25. Configuration window of the Table Row

to Variable Loop Start node.

Chapter 7: Loops

174

can see that there is a new flow variable named “country” with value “Brazil” and that the current

iteration is numbered 0. “Brazil” was indeed the first value in the “country” column in the input

data table.

We closed the loop with a generic “Loop End” node with two input and two output ports.

Note. Remember that you can add input and output ports to the “Loop End” node by clicking

the three dots in the lower left corner of the node and selecting “Add Collector Port”.

If we now run “Step Loop Execution” from the context menu

of the “Loop End” node, at the second iteration we see that the

flow variable named “country” takes the next value in the input

list: “China”, and so on.

We still need to build the body of the loop. The goal was to

isolate the data rows for each country, to calculate the

statistical measures through a “Statistics” node, to add the

country to the measures, and to export the final results. After

the “Table Row To Variable Loop Start” node and before the “Loop End” node, we introduced a

“Row Filter” node to select only the data rows for the current value of the flow variable “country”;

a “Statistics” node to calculate mean and variance and other statistical measures on the

selected data group; and a “Variable to Table Column” node to add the current value of flow

variable “country”.

The execution of a loop on a list of values can become quite slow, if the data set to loop on is

very large and the list of values is quite long. One way to make the workflow execution faster

is to cache the data group. There is a node that is used to cache data: the “Cache” node.

Cache

The “Cache” node caches all input data onto disk.

Figure 7.26. Adding one more port to

the Loop End node.

Figure 7.27. Output port view from the context menu of the Table Row To Variable Loop Start node.

Chapter 7: Loops

175

This is particularly useful when the preceding node performs a column transformation. In fact,

many column transformation nodes only hide the unwanted part of the input data, showing

what the result should be but really keeping in memory the whole input data table. For example,

a “Filter Column” node just hides the unwanted columns from the output.

A “Cache” node instead caches only the visible data from the input table. Therefore, a “Cache”

node after a “Column Filter” node loads only the visible input data and this might make the

workflow execution faster, especially with loops when a data table is iterated many times.

The “Cache” node does not require any configuration settings.

A “Cache” node was inserted inside the loop after the “Row Filter” node to speed the loop

execution at each iteration.

The “Statistics” node has three output ports:

• the top port for the statistics on numerical columns,

• the lowest port for the statistics on nominal columns,

• the port in the middle for the histogram tables.

Our goal is to collect the statistical measures for both nominal and numerical columns. We

need then a loop end node capable to collect two data flows. The “Loop End” node can do

exactly that. It has two input ports and two output ports. It collects the loop results from two

different branches at its input ports and produces the concatenated data tables at the output

ports.

The final version of the “Loop on List of Values” workflow, named “filter by country”, is shown

in the figure below.

Chapter 7: Loops

176

7.7. Loop on Data Groups and Data Chunks

In the previous section we have isolated the list of countries and calculated a few sales

statistics for each one of them. Now, would not that be much easier to loop on the groups

directly? The “Group Loop Start” node identifies unique values in a selected data column,

extracts the associated groups of data rows in the input data table, and loops over them. This

makes the task described in the previous section even easier!

Instead of having a “Table Row to Variable Loop Start” node followed by a “Row Filter” node

and a “Cache” node like in the previous section, we just introduced a “Group Loop Start” node.

The “Group Loop Start” node was set to loop on unique values in the “country” column, i.e., on

the groups of data defined by each country value.

The loop body was then again made by the “Statistics” node and the two “Variable to Table

Column” nodes to append the current country name to the resulting data tables. The loop was

then closed with a “Loop End” node with two ports.

Group Loop Start

The “Group Loop Start” node starts a group loop. It identifies a list of unique values in one or

more of the input data columns, detects the groups in the input data table associated with each

Figure 7.28. Workflow "Loop on List of Values".

Chapter 7: Loops

177

one of these values, and iterates over those groups. The configuration window of the “Group

Loop Start” node requires the data column(s) from whose values to build the data groups.

The column selection is obtained by means of an Exclude/Include framework. Columns can be

included manually, based on a wildcard or regex expression, or based on type. Data columns in

the “Include” frame will be used to group the data rows; those in the “Exclude” frame will not.

In case of manual selection, “Enforce Inclusion” and “Enforce Exclusion” add possible new data

columns to the “Exclude” frame or to the “Include” frame respectively.

Since the “Group Loop Start” node is equivalent to the “Table Row to Variable Loop Start”

followed by a “Row Filter” node, the output data tables produced by the “Loop End” node should

be identical in this new workflow – named “Loop on Groups of Data” – as in the workflow

generated in the previous section – named “Loop on List of Values”.

The “Workflow Control” -> “Loop Support” category includes a type of loop similar to the loop

on groups: the loop on chunks. This loop divides the input data table into smaller pieces

(chunks) and iterates from the first piece to the last one till the end of the data table has been

reached. So, for example, a data set with 99 data rows can have 3 chunks of 33 data rows each.

The biggest advantage in using a chunk loop is not in the number of iterations on the input data

set, since it only covers the input data set once, but the speed. Indeed, processing smaller

chunks of data at a time speeds up execution. A second advantage in using a chunk loop is

that different processing can be applied to different chunks of data. A chunk loop starts with a

“Chunk Loop Start” node and ends with any of the loop end nodes.

Figure 7.29. Configuration window of the Group Loop Start node.

Chapter 7: Loops

178

Chunk Loop Start

The “Chunk Loop Start” node starts a chunk loop.

It divides the input data table into a number of

pieces (chunks) and iterates over those chunks.

The configuration window of the “Chunk Loop

Start” node requires:

• Either the (maximum) number of data rows

in each chunk

• Or the number of chunks

We created a new workflow named “Chunk

Loop”. This workflow uses the same data generated by the “Data Generator” node named “3

clusters, 2 coordinates" described in section 7.2. We set the “Data Generator” node to produce

99 data rows distributed across 3 clusters along 2 coordinates. The original data set then

contains 33 data rows for cluster 1, 33 data rows for cluster 2, and 33 data rows for cluster 3

and defining chunks of 33 rows fits the clusters size perfectly.

We implemented a chunk loop on chunks of 33 data rows. For each chunk, we shift the data

along the x-axis of as many units as the iteration number. This translated into:

Figure 7.30. Configuration window of the Chunk Loop

Start node.

Figure 7.31. Workflow "Loop on Groups of Data”. This workflow performs the same

task as the workflow named “Loop on List of Values”.

Chapter 7: Loops

179

• A “Chunk Loop Start” node to start the chunk loop, with “Rows per chunk” set to 33;

• A “Math Formula” node with “$Universe_0_0$ + $${IcurrentIteration}$$” where

$Universe_0_0$ is a data column and {IcurrentIteration}$$ the loop flow variable

• A generic “Loop End” node to close the loop and concatenate the results of each iteration.

• We then inserted a “Scatter Plot” node to visualize the final data table.

The “Chunk Loop” workflow as well as the dataset before and after the progressive shifting is

shown below.

Figure 7.32. Workflow "Chunk Loop".

Chapter 7: Loops

180

Figure 7.33. Original dataset.

Figure 7.34. Progressively x-Shifted Data Set after executing the workflow “Chunk Loop”.

Chapter 7: Loops

181

Another node in the “Loops” category that might be worth mentioning is the “Breakpoint” node.

The “Breakpoint” node can be inserted in a loop body and, while it does not process data, it

might give some control on the loop execution.

Breakpoint

The “Breakpoint” node prevents the loop

execution when the input table fulfills a user-

specified condition, like for example the input

data table is empty or a variable matches some

set value.

The configuration window then needs:

• The flag enabling the breakpoint

• The condition for which the breakpoint has

to become active and disable the loop

execution (like for example an empty input

data table)

• The name of the flow variable and its breakpoint value if the “variable matches value”

condition has been selected.

7.8. Keep Looping till a Condition is verified

In the first sections of this chapter, we have seen how to repeatedly execute a group of

operations on the input data for a pre-defined number of times. However, there are other cases

where we do not know upfront how many iterations are needed. We only know that the loop

has to stop when a certain condition is met.

In this section, we are going to show how to implement the second solution: iterating till a

condition is met. In order to implement a “do-while” cycle, i.e., a loop that iterates till a condition

is met, we use the “Generic Loop Start” node to start the loop and the “Variable Condition Loop

End” to end the loop and collect the results.

Figure 7.35. Configuration window of the Chunk Loop

Start node.

Chapter 7: Loops

182

Generic Loop Start

The “Generic Loop Start” node, located in the “Workflow Control” -> “Loop Support” category,

starts a generic loop on all data rows without any previous assumptions and, because of that,

it needs no configuration settings.

The “Generic Loop Start” node starts a generic loop on all data rows without any assumptions.

The “Variable Condition Loop End” implements the stop condition and checks it at the end of

each iteration. If the loop condition is verified the “Variable Condition Loop End” ends the loop

and makes the results, collected till now, available at the output port. Otherwise, it passes the

control back to the loop start node and proceeds with the next iteration.

Variable Condition Loop End

The “Variable Condition Loop End”

implements a condition to terminate a

loop. At the end of each iteration the

condition is evaluated and, if it is true, the

loop is terminated, and the collected

results are made available at the output

port.

The terminating condition can only be

implemented on a flow variable. The

configuration window then requires:

• the flow variable on which the

condition is evaluated

• the condition (i.e., comparison operator + value)

• a few flags to exclude or only include the last iteration results and/or to append the

iteration column

A second output port shows the progressive values of the flow variable used to implement the

loop condition throughout the loop iterations.

Note. The terminating condition can only be implemented on one of the flow variables

available to the “Variable Condition Loop End” node. This means that the flow variable for

the loop condition has to be defined before the loop end node is reached. It can of course

be updated at each iteration.

Figure 7.36. Configuration window of the Variable Condition

Loop end node.

Chapter 7: Loops

183

In order to show how such a loop can be implemented, we created a new workflow under the

“Chapter7” workflow group, and we named it “Loop on Condition”. This workflow implements

a game. I think of a number and write it into the “Table Creator” node. Then I prompt the user

to guess it. The user can try a new guess three times, after which the game just ends either

way.

This workflow starts with a Table Creator node containing my mystery number. Then a Generic

Loop Start node starts the guessing loop. In the loop the user is prompted to guess the number

through a String Widget node. Guess and number are compared in a Rule Engine Variable node

that produces 1 if the guess was correct OR the number of iterations was > 2, 0 otherwise. The

result is stored in a flow variable named “success”. The loop should terminate when success =

1. This condition is checked in the “Variable Condition loop End” node that closes the loop and

the workflow.

Note. Like other loop end nodes, the Variable Condition Loop End node introduces a few

new flow variables related to the loop execution, like “currentIteration” which contains the

current iteration number.

Both the Variable Condition Loop End node and the Generic Loop Start node can add and

remove ports through their three dots placed in the lower left corner.

Figure 7.37. Workflow "Loop on Condition".

Chapter 7: Loops

184

7.9. Recursive Loop

All loops described in the previous sections do not change the content of the loop input data

table across iterations. At each new iteration the input data table is unchanged. Each iteration

might extract a different part of the input data table, but the data table itself is always the same.

For example, the counting loop loops a number N of times on the same input data table. That

is, all so far seen loops do not have memory.

In the workflow named “Counting Loop 1” and implemented in section 7.2 the iteration number

is added to the initial x values. In this section, we want to re-elaborate that workflow as to

increment the x values in the input data one more unit at each new iteration. Therefore, we need

a loop that can pass the incremented x-values back to the loop start: that is we need a loop

with memory. There is only one such a loop in the KNIME Analytics Platform: the recursive loop.

A recursive loop starts with a “Recursive Loop Start” node and ends with a “Recursive Loop

End” node. The particularity of this loop lies in the loop end node. The “Recursive Loop End”

node has two input ports: one to collect the iteration output data table (like all other loop end

nodes) and one to pass the processed data back to the loop start node as the new input data

for the next iteration. The recursive loop node pair enables the passing of a data table from the

“Recursive Loop End” node back to the “Recursive Loop Start” node. The output data table

collected at the current iteration may or may not be the input data table for the next iteration.

Hence the two distinct input ports of the “Recursive Loop End” node.

We copied the old “Counting Loop 1” workflow and renamed it “Recursive Loop”. As in the

original workflow, the “Data Generator” node generates 100 data rows distributed across 3

clusters along two coordinates (“Universe_0_0” and “Universe_0_1”). However, instead of the

counting loop we introduced a recursive loop, with a “Recursive Loop Start” node and a

“Recursive Loop End” node with maximum number of iterations set to 4.

The goal of this loop is to increment the initial x-values (“Universe_0_0”) 1 unit at each iteration.

So, the loop body was implemented through a “Math Formula” node with mathematical

expression “$Universe_0_0$ + 1”, that is adding one unit to all x-values at each iteration. As

usual two “Scatter Plot” nodes show the data cluster distribution before and after the loop.

Recursive Loop Start

The “Recursive Loop Start” node starts a recursive loop and must be used together with a

“Recursive Loop End” node.

The “Recursive Loop Start” node and the “Recursive Loop End” node communicate with each

other at the end of each iteration. At iteration 0 the “Recursive Loop Start” node uses the input

data able to feed the loop body. After iteration 0, the “Recursive Loop Start” node feeds the loop

Chapter 7: Loops

185

body with the data table received from the second input port of the “Recursive End Loop” node.

No configuration settings needed.

Recursive Loop End

The “Recursive Loop End” node closes a

recursive loop, started by a “Recursive Loop

Start” node. The “Recursive Loop End” node has

two input ports.

• The first input port collects the results of

the current iteration and concatenates

them with the results from the previous

iterations. At the end of the loop the final

data table will be passed to the only output

port.

• The second input port receives the data

table to pass back to the “Recursive Loop

Start” node to feed the next loop iteration.

The first three settings in the configuration window are stop settings, to avoid infinite loops.

The loop will stop if:

• The data table passed back to the loop start node contains less than the required

minimum number of rows

• A maximum number of iterations has been reached

• A variable takes value “true”

• The last two settings regulate the data structure.

• Collect the output data only from the last iteration or from all iterations.

• Add a data column containing the iteration number to the final output data table

• And finally pass on all the loop variables that have been created and modified.

Figure 7.38. Configuration of the Recursive Loop End

node.

Chapter 7: Loops

186

7.10. Exercises

Exercise 1

Generate 5400 data rows in a two-dimensional space grouped in 6 clusters each with a

standard deviation value of 0.1 and no noise. Assign different colors to the data of each cluster

and plot the data by means of a scatter plot.

Then process the data of each cluster in a different way according to the formulas below and

observe how the clusters have changed by means of a scatter plot again. To make the workflow

run faster and be more flexible, use a loop to process the data.

x = Universe_0_0, y = Universe_0_1

Cluster 0: x = x
Cluster 1: x = sqrt(x)
Cluster 2: x = x + iteration number
Cluster 3: x = x * iteration number
Cluster 4: x = y
Cluster 5: x = x*x

Figure 7.39. Workflow "Recursive Loop".

Chapter 7: Loops

187

Solution to Exercise 1

To process the data in a loop, we used a “Chunk Loop Start” node. We defined the chunk size

to be 900 data rows in order to have exactly one cluster in each chunk. We then closed the loop

with a generic “End Loop” node which concatenates the output tables into the final result. The

different processing for each cluster is implemented with a “Java Snippet (simple)” node with

the following code:

Double x = 0.0;

if($${IcurrentIteration}$$==0) x=$Universe_0_0$;

else if($${IcurrentIteration}$$==1) x=Math.sqrt($Universe_0_0$);

else if($${IcurrentIteration}$$==2) x=$Universe_0_0$+$${IcurrentIteration}$$;

else if($${IcurrentIteration}$$==3) x=$Universe_0_0$*$${IcurrentIteration}$$;

else if($${IcurrentIteration}$$==4) x=$Universe_0_1$;

else x = $Universe_0_0$*$Universe_0_0$;

return x;

The scatter plot of the original data and the scatter plot of the processed data are shown in the

figures below.

Figure 7.40. Scatter Plot of the original dataset.

Chapter 7: Loops

188

Figure 7.41. Scatter Plot of the resulting data.

Figure 7.42. Exercise 1: The workflow.

Chapter 7: Loops

189

Exercise 2

On the 15th of each month a course takes place, starting from 15.01.2011. Teacher “Maria”

teaches till the end of March, teacher “Jay” till the end of September, and teacher “Michael” till

the end of the year. The course is held in San Francisco from May to September and in New

York the other months. Generate the full table of the courses for the year 2011 with course

date, teacher name, and town.

Solution to Exercise 2

To solve this problem we started from a data set with the first course date only: 15.01.2011.

Then we used a “Counting Loop Start” node that iterates 12 times on the initial data set and

generates a new date at each iteration.

The “teacher” and “town” columns are both obtained with a “Rule Engine” node.

Figure 7.43. Exercise 2: The workflow.

Figure 7.44. Exercise 2: The "add one month to course date" metanode.

Chapter 7: Loops

190

Exercise 3

This exercise gets rid of duplicated unnecessary data rows.

In the folder KALdata there is a file called “wrong_sales_file.txt” which contains sales records,

each one with a contract number, as well as duplicate records. In fact, for each sale you can

find an older record with a few missing values and a more recent record with all field values

correctly filled in. The column “load_date” contains the date of record creation. Of course, we

want to get rid of the old records with missing values and keep only the recent records with all

fields filled in. In this way, we get a sales table with a unique record ID, i.e. the contract number,

and only the most up to date values.

Solution to Exercise 3

In the solution workflow, we read the “wrong_sales_file.txt” with a “File Reader” node. If we

execute a “RowID” node on the “contract nr” column and with the flag “ensure uniqueness” not

enabled, then the “RowID” node’s execution fails. This means that the “contract nr” column

contains non-unique values. Indeed, for each “contract nr” we have two records in the data

table: an old one with many missing values and a recent one with all fields filled in.

In order to filter out the older records with missing values, we loop on the “contract nr” list with

a “Table Row To Variable Loop Start” node. At each iteration, we keep only the records with the

“contract nr” of the current iteration (“Row Filter” node), we sort the selected records by

“load_date”, in descending order, and we keep only the first row (the second “Row Filter” node),

which is the most recent record. The loop is then closed by a generic “Loop End” node.

If we now run a “RowID” node on the loop results, which is similarly configured to the first

“RowID” node of this exercise, it should not fail anymore.

The same result could have been obtained with just a GroupBy node, grouping by contract

number and taking just the first (or last depending on sorting) of all other values.

Note. Since KNIME has been thought in terms of data tables, loops are rarely needed.

Before using a loop make sure that a dedicated node for what you have in mind does not

exist!

Chapter 7: Loops

191

Exercise 4

Let’s suppose that the correct file called “sales.txt” had been saved in many pieces. In

particular, let’s suppose that each column of the file had been saved together with the “contract

nr” in a single file under “KALdata/sales”.

This exercise tries to find all the pieces and to collect them together to form the original file

“sales.txt”. In “KALdata/sales” we find files like “sales_<column name>.txt” containing the

“contract nr” and the “<column name>” columns of the sale records. There are 6 files for 6

columns: “card”, “amount”, “quantity”, “card”, “date”, “product”.

Figure 7.45. Exercise 3: The workflow.

Chapter 7: Loops

192

Solution to Exercise 4

Our solution to this exercise, builds a data table

with a “Table Creator” node which includes only the

column names in a column named “type”.

Then a “Table Row to Variable Loop Start” starts a

loop that:

• loops over the list of column names in “type”,

• builds the file path with a “String Manipulation

(Variable)” node with: join($${Sfile-path}$$,

"sales_", $${Stype}$$, ".csv")

• passes the file path as a workflow variable to

a “CSV Reader” node,

• reads the file via the “CSV Reader” node,

• collects the final results with a “Loop End (Column Append)” node.

If the “contract nr” values are read as RowIDs for each file, then the “Loop End (Column

Append)” node joins all these columns, providing the flag for the “Loop has same rowIDs in

each iteration” is enabled in its configuration window.

The “CSV Reader” node needs to use the flow variable called “filename_location” to read the

file, which was created according to the variable “type” by the “Table Row To Variable Loop

Start”.

Figure 7.46. The configuration window of the Table

Creator node.

Chapter 7: Loops

193

Figure 7.47. The “ColumnName” setting in the "Workflow Variables" Tab of the

configuration window of the "File Reader" node to name the data column read at

each iteration.

Figure 7.48. Exercise 4: The workflow.

194

Chapter 8: Switches

8.1. Introduction to Switches

KNIME workflows consist of a sequence of nodes connected together. The sequence can be

linear, where one node is connected just to the next, or it can branch off to multiple parallel

routes. Sometimes in some situations it might be preferable to execute only some of the

parallel branches of the workflow and not the others. This is where the KNIME node group,

“Switches”, becomes useful.

A “Switch Start” node determines the flow of data via one or more workflow branches. Data

flows into a “Switch Start” node and is then directed down one or more routes where a number

of specific operations are performed, while all other routes remain inactive. All routes

originating from a “Switch Start” node are finally collected by a “Switch End” node. The KNIME

switch concept is illustrated below, where a switch with three alternative parallel routes has

been implemented.

Depending on the type of “Switch Start” node, the data can flow out through one or more ports.

In the example above, the “CASE Switch Start” node has three output ports, of which only one

is active at a time. In this particular configuration, the data has been enabled to flow out from

the third output port of the “CASE Switch Start” node only. The top output ports, in fact, are

blocked, as depicted by a red cross. The data then flows through a number of nodes

implementing “another function” till the “CASE Switch End” node, thus completing the switch

process. Which output port of the “Switch Start” node is active, and therefore which route the

data takes, can be controlled in the configuration window.

All “Switch Start” and “Switch End” nodes are located in the “Workfow Control” -> “Switches”

category in the “Node Repository” panel. There are two main types of “Switch” nodes: the “IF

Switch” nodes and the “CASE Switch” nodes. The “IF Switch” node starts a two branch switch

Figure 8.1. Generic illustration of data flow control via Switches.

Chapter 8: Switches

195

closed by the “End IF” node. The “CASE Switch Start”

node starts three parallel branches and results from

the three branches are collected by a “CASE Switch

End” node.

Notice the plus sign in the lower corner of the “CASE

Switch” nodes. Indeed, while the “IF Switch” nodes only

operates on data through their data ports, the “CASE

Switch” nodes can operate on data, models, variables,

and so on just by dynamically adding ports of the

desired type through the plus sign feature. You can also

mix and match, i.e. you can start with a “CASE Switch

Start” node with data ports, passing the data to the

switch branches, and close with a “CASE Switch End”

node with variable ports, collecting results of type flow

variable to pass on to the next nodes, or vice versa.

In the “Workflow Control” -> “Switches” category we

can also find a “Java IF (Table)” node. The “Java IF

(Table)” node works similarly to an “IF Switch” node but

allows for the flow of data to be controlled by a Java

method.

Finally, the last node in this category is the “Empty Table Switch” node. The output of an “Empty

Table Switch” node becomes inactive (i.e. connected nodes are on an inactive branch) if the

input table is an empty data table. This avoids the execution of subsequent nodes on tables

with no actual content and possibly the workflow failure.

8.2. The “IF Switch”- “END IF” switch block

There are two “IF Switch” nodes: the “IF Switch” node and the “Java IF (Table)” node. The “IF

Switch” node is a simple switch to change the data flow in one direction or another. The

direction can be controlled manually or by means of a workflow variable. The “Java IF (Table)”

node also controls the data flow but by means of a Java method. Both these nodes use the

same “End IF” node to terminate the switch data flow control block.

Let’s start with the simplest of the two switch nodes: the “IF Switch” node. In the workflows

that you have imported for this book (see chapter 1), two workflows are available in folder

“Chapter8” that demonstrate how to set the “IF Switch” node manually or automatically: the

“Manual IF Switch” workflow and the “Automatic IF Switch” workflow.

Figure 8.2. The nodes contained in the

"Switches" category.

Chapter 8: Switches

196

The “Manual IF Switch” workflow reads “cars-85.csv” file from the folder KALdata, bins the data

set using the fuel consumption in mpg for either city driving or highway usage, and calculates

the statistics of “curb weight”, “engine size”, and “horse power” over the defined bins. To

alternatively bin the data set on different data column values, we need two branches inside the

workflow: one branch to bin the data set on “city mpg” data column and the other branch to bin

the data set on the “highway mpg” data column.

In order to produce two parallel alternative branches in the workflow, the data flow is controlled

by an “IF Switch” node. The “IF Switch” node implements two branches: the top branch is

supposed to bin the “city mpg” data column, while the bottom branch is supposed to bin the

“highway mpg” data column. The “IF Switch” node is configured to enable the top branch by

default. If the data is supposed to flow through the bottom branch, a manual change has to be

made to the setting in its configuration window.

IF Switch

The “IF Switch” node allows data to be branched off to

either one or both of the two available output ports. The

direction of the data flow can be controlled by manually

changing the node’s configuration settings or

automatically by means of a flow variable.

In the configuration window:

• The “Options” tab contains the options for the

manual setting of the active output port; option

“Activate all outputs during configuration step”

enables all outputs during configuration of other

subsequent nodes.

• The “Flow Variables” tab allows to overwrite the active output port in the “Options” tab

with a workflow variable value.

The “Options” tab in the configuration window contains three radio buttons to manually select

the path for the data flow. By selecting “top” or “bottom” or “both” the corresponding output

port(s) is/are activated.

Figure 8.3. Configuration window of the IF

Switch node: the "Options" tab.

Chapter 8: Switches

197

Alternatively, the “Flow Variables” tab allows to

overwrite the configuration parameter “PortChoice”, set

in the “Options” tab, with a String-type workflow

variable. The allowed workflow variable values are:

“top”, “bottom”, and “both”.

The goal of this workflow is to calculate some statistics

for columns “curb weight”, “engine size” and “horse

power”, sometimes on the quantiles of column

“city_mpg” and sometimes on the quantiles of column

“highway_mpg”. So, in both branches following the “IF

Switch” node, an “Auto-Binner” node was used to bin the data set based on sample quartiles of

“city_mpg” on one branch and of “highway_mpg” on the other branch of the IF block. The “Auto-

Binner” node returns the input data set with an additional column containing the numbered

bins. This column has the header name of either “city mpg [Binned]”, if the top branch is taken,

or “highway mpg [Binned]”, if the bottom branch is selected. The switch block is then closed

by an “END IF” node.

End IF

The “End IF” node closes a switch block that was

started by either an “IF Switch” node or a “Java IF

(Table)” node.

The “END IF” node has two input ports and accepts data

from either the top, or bottom, or both input ports. If

both input ports receive data from active branches, then

the result is the concatenation of the two data tables.

The configuration window of the “End IF” node requires

only a duplicate row handling strategy among two

possible alternatives: either skip duplicate rows or

append a suffix to make the RowIDs unique.

Check the “Enable hiliting” box if you wish to preserve

any hiliting after this node.

A “GroupBy” node was appended at the end of the switch block to calculate the statistics of

“curb weight”, “engine size”, and “horse power” over the defined bins produced by the active

workflow branch. Since it would be cumbersome to manually change the configuration settings

of the “GroupBy” node every time the active output port of the “IF Switch” node is changed, we

Figure 8.4. Configuration window of the IF

Switch node: the "Flow Variables" tab.

Figure 8.5. The configuration window of the

End IF node.

Chapter 8: Switches

198

renamed the binned column in both branches to carry the same column header, i.e.

“Binned.MPG”. The “Manual IF Switch” workflow is shown below.

The “Auto-Binner” node does not belong to the “Switches” category. However, since it has been

used to implement the “Manual IF Switch” workflow, we spend a few words here to describe

how it works and what it can be used for. The “Auto-Binner” node groups numeric data in

intervals - called bins. Unlike the “Numeric Binner” node, the “Auto-Binner” node first divides the

binning data columns into a number of equally spaced bins; then labels the data as belonging

to one of those bins. The column to be binned is selected via an “Exclude/Include” framework,

manually or via Regular / wildcard expression.

The manual selection of the column to be binned is based on an “Exclude/Include” framework:

the columns to be used for binning are listed in the “Include” frame on the right; the columns to

be excluded from the binning process are listed in the “Exclude” frame on the left.

You can move either selected or all visible columns between the “Exclude” and “Include” lists

by using four buttons between the lists. A “Filter” box in each frame allows searching for

specific columns, in case an excessive number of columns impedes an easy overview of the

data.

The selection based on a regular expression or a wildcard requires the regex or wildcard

matching pattern as configuration setting.

Figure 8.6. The "Manual IF Switch" node.

Chapter 8: Switches

199

Auto-Binner

The configuration window offers the choice between two methods to build the bins:

• As a fixed number of equally spaced bins;

• As pre-defined sample quantiles.

The configuration window also offers the choice between three naming options for the bins:

• “Bin1”, “Bin2”, …, “BinN”

• By using the bin borders, e.g. [0.5674, 0.7899]

• By using midpoints, e.g., -5, 5, 15

There is then a flag to avoid these non-round boundaries of the bin intervals. You can also

choose to overwrite the original column by means of another flag. The “Number Format

Settings” tab allows for custom formatting of double and string bin labels.

Figure 8.7. Configuration window of the Auto-Binner node: Manual Selection.

Chapter 8: Switches

200

Pre-defined sample quantiles produce bins corresponding to the given list of frequencies.

The smallest element corresponds to a frequency of 0 and the largest to a frequency of 1.

The applied estimation method is Type 7, which is the default method in R, S and Excel.

Note. The “Auto-Binner” node does not allow customized bins. Please use the "Numeric

Binner" node if you want to define custom bins.

Alternative to the manual setting of the active port(s) in the “IF Switch” node configuration

window, we could define a workflow variable of type String, for example named “PortChoice”,

and we could use that variable to overwrite the manual settings in the “IF Switch” node’s

configuration window. If we activate the output port of the “IF Switch” node via a flow variable,

we do not need to manually change the node configuration settings to enable the other branch

of the switch block. In this case, it is enough to change the value of the flow variable

“PortChoice”, for example from “top” to “bottom”.

The new workflow with the automatic activation of the output port(s) of the “IF Switch” node is

named “Automatic IF Switch” and is available again in folder “Chapter8”. This workflow is

identical to the “IF Manual Switch” workflow, except for the flow variable “PortChoice” and the

configuration settings of the “IF Switch” node. In fact, the “IF Switch” node is configured so as

to overwrite the active port choice with the value of the flow variable “PortChoice”.

8.3. The “Java IF (Table)” node

A similar node to the “IF Switch” node is the “Java IF (Table)” node. In the “Java IF (Table)”

node the active port, and therefore the data flow direction, is controlled through some Java

code. The return value of the Java code determines which port is activated and which branch

of the workflow is active.

A switch block, then, can start with a “Java IF (Table)” node, branch off into two different data

flow paths, and collect the results of the two branches with an “End IF” node. The “JAVA IF

(Table)” node can be found like all other switch nodes under the “Workflow Control” ->

“Switches” category.

To demonstrate the use of the “Java IF (Table)” node, we created a new workflow, named “Java

IF & Tables”, in the workflow group called “Chapter8”. The goal of the workflow was to produce

a box plot on car price, engine size, and horsepower for either two- or four-door cars for data

from the “cars-85.csv” file.

The selection of either two-door cars or four-door cars was implemented by means of a “Java

IF (Table)” switch node governed by a flow variable called “Doors”. This flow variable can take

two string values, either “two” or “four”, which determines the behaviour of the “Java IF (Table)”

Chapter 8: Switches

201

switch node. Finally, an “Box Plot” node produces the box plot on the data coming out of the

switch block. Depending on the value of the “Doors” flow variable and therefore on the active

branch in the switch block, a box plot for engine size, horsepower, and scaled price of two- or

four-door cars is produced.

Java IF (Table)

The “Java IF (Table)” node acts like an “IF Switch” node. It takes one input data table and

redirects it to one of two output ports.

However, it differs from the “IF Switch” node, because it can activate only one output port at a

time.

The main difference between the “IF Switch” node and the “Java IF (Table)” node resides in the

management of the output port activation. The “Java IF (Table)” node executes a piece of Java

code with return value 0 or 1. Return value 0 activates the top output port, while return value 1

activates the lower output port.

The configuration window of the “Java IF (Table)” node resembles the configuration window

of the “Java Edit Variable” node. It contains:

• A “Method Body” panel for the piece of Java code to be executed at execution time

• A “Flow Variable List” panel where all flow variables available to this node are listed

Like the “Java Edit Variable” node, the Java code in the “Java IF (Table)” node operates only on

flow variables. A flow variable can be inserted into the “Method Body” panel by double clicking

any of the entries in the “Flow Variable List” panel.

Figure 8.8. The configuration window of the Java IF (Table) node.

Chapter 8: Switches

202

Unlike the “Java Edit Variable” node, the configuration window of the “Java IF (Table)” node

cannot output any value for the return variable, just 0 or 1. Any other return value will result in

an error at execution time.

Note. Inside the “Java IF (Table)” node configuration window, an exception handling

statement “throw new Abort();” is required at the end of the Java code, to handle

results that do not produce a 0/1 return value.

8.4. The CASE Switch Block

We have finally reached the most commonly used switch block in the KNIME workflows: the

CASE switch block.

The “IF Switch” node and the “Java IF (Table)” node offer a choice between two and only two

data flow paths. In some situations, we might wish to have more options than just two data

flow paths. The “CASE Switch Start” node opens a switch block which is then completed by

inserting a “CASE Switch End” node.

The “CASE Switch Start” node offers the choice of a few possible mutually exclusive data flow

paths. The “CASE Switch End” node collects the results from the active path(s) of the switch

block. The “CASE Switch Start” node and the “CASE Switch End” node are created with no input

Figure 8.9. The "Java IF & Tables" workflow.

Chapter 8: Switches

203

and no output ports. Input and output ports of the desired tape can be added via the dynamic

insertion feature reachable through the three dots on the lower left corner of the node.

CASE Switch Start

The “Case Switch Start” node starts a switch

block with multiple data flow branches. Of the

output ports available, only one can be active at

a time. The output ports are indexed by an

integer number, such as 0, 1, and 2.

The configuration window requires only the

index of the active output port.

Like the “IF Switch” node, the active port index

can be provided manually or automatically via

the Flow Variable button in the configuration

window.

In “Chapter8/CASE Switch” workflow, there is

an example of a CASE switch block. This workflow was implemented to work on the “cars-

85.csv” data. It was implemented to build alternatively a few data classification models on the

input data set: either a Decision Tree, a Probabilistic Neural Network (PNN), or a rule system.

The decision of which model to implement is supposed to be arbitrarily made by the workflow

end user. The workflow then required three separate branches: one to implement the decision

tree, one to implement the PNN, and one to implement a rule system. An “IF Switch” node here

was not enough: “CASE Switch” block with three output data ports was needed.

To toggle between the models, a new flow variable was created and named

“ClassificationModel”. This flow variable is used to indicate the type of analysis to do and can

take three values only: “rule system”, “decision tree”, and “pnn”. However, a “CASE Switch Start”

node cannot understand string values, like “decision tree” or “pnn”. It only takes integer values

to define which output port is active. So, the string value of the “Classification Model” workflow

variable had to be converted to an integer value. We used a “Rule Engine (Variable)” node, to

transform “rule system” into 0, “decision tree” into 1, and “pnn” into 2 and we assigned the final

value to a new flow variable “classification_int”. This last flow variable was used to control the

active port in the “CASE Switch Start” node.

Figure 8.10. The configuration window of the CASE

Switch Start node.

Chapter 8: Switches

204

CASE Switch End

The “CASE Switch End” node closes a CASE switch block with multiple branches and collects

the resulting data table(s).

If more than one branch is active at the same

time, the “CASE Switch End” node offers a few

options:

• merge the resulting data tables together

• fail

• or use only the output of the first inactive

branch

Another problem could be the possible

existence of rows with duplicate RowIDs. In this

case, two options are offered:

• Skip rows with duplicate IDs

• Make those RowIDs unique by appending a suffix to the duplicate values.

Next, we implemented a decision tree, a pnn, and a rule system respectively on each one of the

three branches coming out of the “CASE Switch Start” node. Each model produces two kinds

of results: the model itself and the data tables with the predictions. In order to collect both

results, we used two End nodes to close the switch block: a “CASE Switch End” node with

generic ports to collect the models, and a “CASE Switch End” node to collect the predicted data.

The models are then saved to a file and the predictions are evaluated by a “Scorer” node.

Figure 8.11. The configuration window of the CASE

Switch End node.

Chapter 8: Switches

205

8.5. Transforming an Empty Data Table Result into an
Inactive Branch

In “Chapter8” folder, there is another workflow that implements a CASE switch block: the

“Empty Table Replacer” workflow. This workflow reads the “cars-85.csv” data, keeps only the

cars of a particular “make”, as defined in a workflow variable named “CarMake”. Then it follows

three different branches depending on the type of wheel drive of the car: “4wd”, “fwd”, and

“rwd”. Each branch keeps only the cars with this particular wheel drive type and sends the

resulting data table to a “CASE Switch End” node. Finally, a “GroupBy” node counts the number

of cars by fuel-type for that “make” with that type of wheel drive.

In the “Empty Table Replacer” workflow, the “CASE Switch Start” node is controlled by a flow

variable, named “wheeldrive”. The flow variable “wheeldrive” can only take “rwd”, “fwd”, and

“4wd” string values, which are then transformed into output port indices by a “Rule Engine

(Variable)” node to control the active port in the “CASE Switch Start” node.

Figure 8.12. The "CASE Switch" workflow.

Chapter 8: Switches

206

The data selection in the switch branches is implemented by “Row Filter” nodes on the wheel

drive type. The “Row Filter” nodes are controlled by the same flow variable “wheeldrive” that

controls the active branch in the switch block.

What happens, though, if one of the “Row Filter” nodes returns an empty data table? For

example, if you assign the value “rwd” to the flow variable “wheeldrive”, the “Row Filter” node in

the corresponding active branch produces an empty data table. Indeed, sometimes the

execution of a workflow branch may result in an empty data table being created. Empty tables

can still be processed by nodes further down in the workflow, like the “GroupBy” node, but they

could also result in a lot of warning messages, wasted time, and maybe even data

inconsistencies. To prevent this from happening, the “Empty Table Switch” node enables two

different output ports: one is active when an empty data table is created, and one is active when

a value-filled data table is created.

Empty Table Switch

The “Empty Table Switch” node has two output ports. It activates the lower output port for an

empty input data table. Otherwise, it activates the top output port. This allows for the creation

of an alternate branch in case of an empty input data table and avoids the execution of

subsequent nodes on tables with no actual content.

The configuration window of the “Empty Table Switch” node does not require any setting.

Figure 8.13. The "Empty Table Replacer" workflow.

Chapter 8: Switches

207

In each branch of the CASE switch block, an “Empty Table Switch” node was introduced, to

block further processing of the workflow in case the result of the branch is an empty data table.

If we now run the workflow with the flow variable “wheeldrive” = “fwd”, the “Row Filter” node of

the second branch produces an empty data table, the output of the “CASE Switch End" node

collects no results, the “GroupBy” node becomes inactive and is not executed.

8.6. Exercises

Exercise 1

Create a table containing the numbers 1-10. Then, by using an “CASE Switch” node, create a

workflow to generate an additional integer column produced by multiplying the even numbers

by a factor of 3 and the odd numbers by a factor of 10.

Solution to Exercise 1

The first step is to create a table containing the numbers 1-10, which is achieved using the

“Table Creator” node and by labeling the integer column as “Number”. The aim here is to

perform an operation on alternate lines. The rest from a division by 2 is calculated for each

number by means of a “Math Formula” node. The value of this rest defines the multiplying

factor, 3 or 10. An easy solution to solve this problem could have been to apply a “Rule Engine”

node and transform the rest value into the corresponding multiplying factor. A “Math Formula”

node then would have finished the trick, multiplying each number for the newly created

multiplying factor.

However, we want to use a switch block here. As this can be viewed as a row operation, we

looped over the rows, performed the right multiplication, and then concatenated the final

results. We then started a loop with the “Table Row To Variable Loop Start” node, turning each

number and each rest value into flow variables.

A “CASE Switch Start” node implemented the switch for different multipliers. At each iteration

of the loop, as input data for the “CASE Switch Start” we use the row of initial table that

corresponds to the current iteration. We filter it with the “Row Filter” node by matching to the

flow variable “Number”. Numbers are multiplied by 3 on one of the two branches and by 10 on

the other. The active port of the “CASE Switch Start” node is controlled by the rest value as

Chapter 8: Switches

208

calculated in the Math Formula node: 0 enables the upper port; 1 enables the second output

port.

Figure 8.14. Exercise 1: The workflow.

Figure 8.15. Exercise 1: Configuration window of the first Math Formula node.

Chapter 8: Switches

209

Exercise 2

In this exercise we show how to implement a control of the workflow processes based on time

and date.

Using the “cars-85.csv” file, create a workflow that manipulates data differently depending

upon the day of the week:

• On Wednesdays, write out an R box plot for engine size, horse power, and scaled price and

save it as a PNG image;

• Do not perform any operations on the weekend

• For the remaining days keep only the “make”, “aspiration”, “stroke”, and “compression

ratio” data columns.

Use a “CASE Switch” node to implement the branches for different daily data manipulation.

Solution to Exercise 2

First of all, we need to extract the current date and time information. We did that with a “Create

Date&Time Range” node, followed by an “Extract Date&Time Fields” node and a “TableRow to

Variable” node. We are interested in the DAY_OF_WEEK information, expressed as an integer

1-7, 1 being Sunday.

A subsequent “Rule Engine (Variable)” node implements the following rule:

$${IDay of week (number)}$$ = 1 OR $${IDay of week (number)}$$ = 7 => 0

$${IDay of week (number)}$$ = 4 => 1

TRUE => 2;

This returns 0 if it is a weekend, 1 if it is a Wednesday, and 2 otherwise. These numbers are

then used to control the active port of a subsequent “CASE Switch” node.

Three branches are sprouting from the “CASE Switch” node and the final results are collected

by an “End CASE” node.

Chapter 8: Switches

210

Figure 8.16. Exercise 2: The workflow.

211

Node & Topic Index

A

Advanced Dashboards 119

Animated Bar Chart 138

Auto-Binner .. 199

Autocomplete Text Widget 133

B

Big Data .. 31

Breakpoint .. 181

Buffer.. 147

C

Cache ... 174

CASE Switch Block .. 202

CASE Switch End ... 204

CASE Switch Start ... 203

Chunk Loop Start ... 178

Column Filter Widget 123

Column List Loop Start 168

Component 95, 106, 111

Composite View 106, 111

Configuration Nodes 89, 95, 102, 104

Counting Loop Start....................................... 160

Create Date&Time Range 58

Custom Filtering .. 134

D

Data .. 2

Data Generator... 156

Data Value to Flow Variable 87

Database .. 6

Database Looping.. 23

Date&Time ... 53

Date&Time Difference 66

Date&Time Shift ... 61

Date&Time to String .. 57

Date&Time-based Row Filter 62

DB Column Filter .. 17

DB Connection Table Writer 28

DB Connector ... 7

DB Delete (Table) ... 29

DB Query .. 18

DB Reader .. 21, 25

DB Row Filter.. 15

DB Table Selector .. 13

DB Update .. 29

DB Writer .. 26

Dynamic Update .. 125

E

Empty Table Switch 206

End IF ... 197

END IF Switch Block 195

Extract Date&Time Fields 64

F

File Upload ... 104

Flow Variable Button 91

Flow Variable Injection 94

Flow Variable to Data Value 98

Flow Variables ... 83

Flow Variables Creation 84

Flow Variables Editing 99

Flow Variables Tab .. 92

For Loop ... 155

G

Generic Loop Start ... 182

Geometry To Point ... 146

Node & Topic Index

212

Geospatial Analytics 140

Geospatial View ... 142

GET Request .. 45, 46

Google Authenticator 38

Google Sheets .. 37

Google Sheets Appender 41

Google Sheets Connection 39

Google Sheets Reader 39

Google Sheets Updater 42

Google Sheets Writer 43

Group Loop Start ... 176

H

HDFS .. 31

Hive .. 31

I
IF Switch... 195, 196

Impala .. 31

In-Database Processing 15

Integer Configuration....................................... 90

Interactive Column Selection 123

Interactive Row Selection 128

J

Java IF (Table) ... 200

JavaScript View 106, 111

JDBC Driver .. 8

JSON Path .. 47

JSON to Table .. 48

K

KNIME Business Hub 84, 95

L

Lag Column .. 75

Loop End .. 160

Loop End (Column Append) 165

Loop Execution Commands 163

Loop on a List of Columns 167

Loop on a List of Values 172

Loop on Data Chunks 176

Loop on Data Groups 176

Loops ... 154

Loops Definition ... 154

M

Maximum Heap Space 4

Memory Usage ... 4

Merge Variables ... 95

Modify Time ... 60

MongoDB ... 31

Moving Aggregation 68, 71

Moving Average ... 68, 70

N

Nominal Row Filter Widget 128

O

OSM Boundary Map 141

P

POST Request .. 50, 51

Projection ... 146

R

Range Slider Filter Widget 108

Recursive Loop .. 184

Recursive Loop End 185

Recursive Loop Start 184

Refresh Button Widget 126

REST Services .. 43

S

Single Selection Widget 135

SQL Executor ... 19

SQL Extract .. 21

SQL Inject ... 20

SQLite Connector ... 11

Node & Topic Index

213

String to Date&Time .. 55

Switches ... 194

T

Table Creator ... 23

Table Row to Variable 86

Table Row To Variable Loop Start 172

Text Autocompletion 132

Time Series Analysis 75

U

UCI Machine Learning Repository..................... 3

V

Value Selection Widget 103

Variable Condition Loop End 182

Variable to Table Row 98

W

Web Scraping ... 37

While Loop ... 181

Widget Nodes 95, 102, 104

Workflows .. 2

This book presents some more advanced features like looping,
workflow variables, reading and writing data from and to a
database, dealing with Date&Time objects, and more. The goal
is to elevate your data analysis from a basic exploratory level
to a more professionally organized and complex structure.

KNIME Advanced’s Luck

Dr. Rosaria Silipo has been mining data since her master's
degree in 1992. She kept mining data throughout all her doc-
toral program, her postdoctoral program, and most of her
following job positions. She has many years of experience in
data analysis, reporting, business intelligence, training, and
writing. In the last few years she has been using KNIME for all
her data science work, becoming a KNIME trainer and evange-
list.

Sanket Joshi works as a Data Analyst in the Evangelism
team. After completing a bachelor's degree in Computer Sci-
ence, he moved to Germany to pursue his master's Degree in
Data and Knowledge Engineering at OVGU, Magdeburg where
he worked with different data tools. Sanket handles the inter-
nal reporting of the team and loves building workflows.

ISBN: 978-3-9523926-6-9

